HYDROGEN AND POWER PRODUCTION WITH INTEGRATED CARBON DIOXIDE CAPTURE BY CHEMICAL-LOOPING REFORMING

Magnus Rydén
Anders Lyngfelt
Chalmers University of Techology

Vancouver, September 2004

circulating fluidized-bed combustion of solid fuels

commercial:

250 MWe in operation 600 MWe designed

chemical-looping combustion

- A extra fluidized-bed
- B extra particle lock
- C additional gas outlet
- D no gas residence time criteria

chemical-looping combustion chemical-looping reforming

full fuel conversion

partial fuel conversion 3 × added fuel (~1/3 cost/MW fuel)

chemical-looping reforming suitable for scaling-up undiluted CO₂/H₂

conventional reforming in use

ATMOSPHERIC CLR

Simplified process scheme for case 1A, atmospheric CLR by partial oxidation. Preheating of fuel, air and steam is not shown.

PRESSURIZED CLR

Simplified process scheme for case 2B, pressurized CLR with internal H2 combustor. Integration with steam cycle and preheating of fuel and steam is not shown.

chemical-looping reformation cases

atmospheric

1A partial oxidation

1B autothermal, (partial oxidation and some steam

added)

1C autothermal, heat used in steam cycle

pressurized+combined cycle

2A autothermal, turbine

inlet 1017 C

2B autothermal, H₂ used

for temperature increase

2C autothermal, high

temperature air reactor

1172 C

THERMAL PERFORMANCE

Case 1A
Atmospheric CLR
Partial oxidation

Pressurized CLR 15 bar Autothermal Reforming Combined cycle with internal H2 combustor

HYDROGEN AND POWER

□ CH4 (LHV) ■ H2 (LHV) □ Net Power □ Net Power (includes H2 compression to 20 bar)

1A: Atmospheric CLR, POX at 884 C

1B: Atmospheric CLR, ATR at 888 C

1C: Atmospheric CLR, ATR at 872C, steam cycle

2A: CLR ATR at 15 bar, 1017C, combined cycle

2B: CLR ATR at 15 bar, 1000C, internal H2 combustor and combined cycle (0.11 H2 to internal combustion)

2C: CLR ATR at 15 bar, 1172C, combined cycle

3A: Steam reforming at 20 bar, 800C, with amine scrubbing

(0.43 H2 and 0.14 CH4 to internal combustion)

REFORMER EFFICIENCY

1A: Atmospheric CLR, POX at 884 C

1B: Atmospheric CLR, ATR at 888 C

1C: Atmospheric CLR, ATR at 872C, steam cycle

2A: CLR ATR at 15 bar, 1017C, combined cycle

2B: CLR ATR at 15 bar, 1000C, internal H2

combustor and combined cycle

2C: CLR ATR at 15 bar, 1172C, combined cycle

3A: Steam reforming at 20 bar, 800C, with amine

scrubbing