Oxygen-Carriers for Chemical-Looping Combustion - Operational Experience

Anders Lyngfelt
Chalmers University
of Technology
Göteborg

1st International Conference on Chemical Looping Lyon, 17-19 March 2010

Contents

Brief history

Different applications

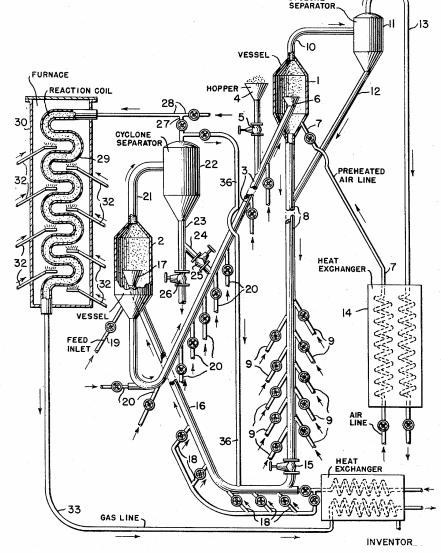
Testing in chemical-looping combustors

1946/1954 Patent by Gilliland:

"Production of industrial gas comprising carbon monoxide and hydrogen"

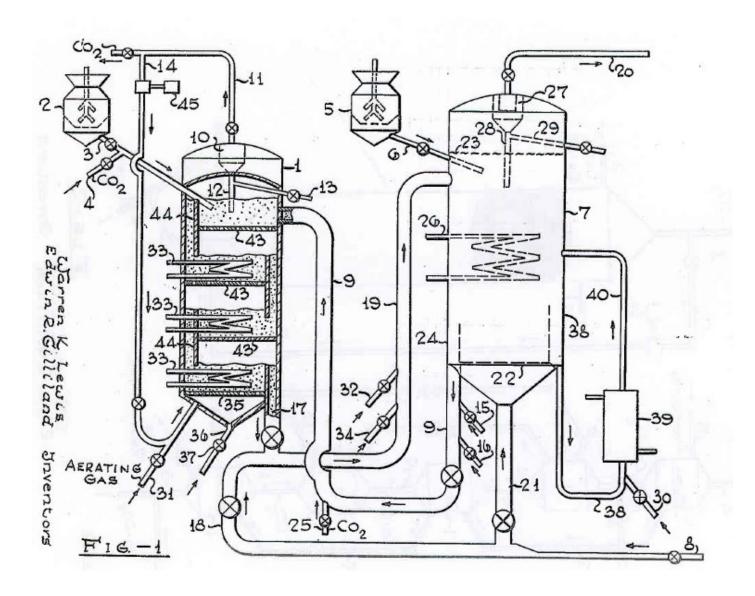
"a metal as oxygen carrier, ... first reacted with air to produce an oxide, then ... reacted with the hydrocarbon to ... carbon monoxide and hydrogen" "finely divided metal oxide ... in a fluidized state"

1950/1954 Patent by Lewis and Gilliland:


"Production of pure carbon dioxide"

using a "solid oxygen carrier" using "any oxidizable carbonaceous material", such as charcoal, coal, coke.... natural gas.... lignite... using two interconnected fluidized beds

From patent by Gilliland filed 1946


March 9, 1954

2,671,721 E. R. GILLILAND PRODUCTION OF INDUSTRIAL GAS COMPRISING CARBON MONOXIDE AND HYDROGEN Filed Aug. 3, 1946 CYCLONE SEPARATOR

Lyngfelt, Lyon March 2010

EDWIN R. GILLILAND

From patent of Lewis & Gilliland filed 1950

- 1983 Thermodynamic study by Richter & Knoche: "Reversibility of Combustion Processes" proposing the principle of CLC to increase efficiency
- 1987 Thermodynamic study by Ishida introduces the name "Chemical-Looping Combustion"
- 1988 experimental study by Ishida on Fe_2O_3 , followed by a number of papers in the 90'ties on Fe-, Ni
- 1994 Ishida proposes the use of CLC for CO₂ capture

- 1997 Hatano presents exp. data for new concept "MERIT" (mediator recycling integrating technology)
- 1998 Yours Truly goes totally looping, after a visit from Japan at Chalmers
- 1999/2000 Lyon proposes "Unmixed reforming" for natural gas / "Unmixed combustion" for solid fuels, including experimental data
- 2000 Copeland presents "Novel CO₂ separation system" later named SETS (sorbent energy transfer system)

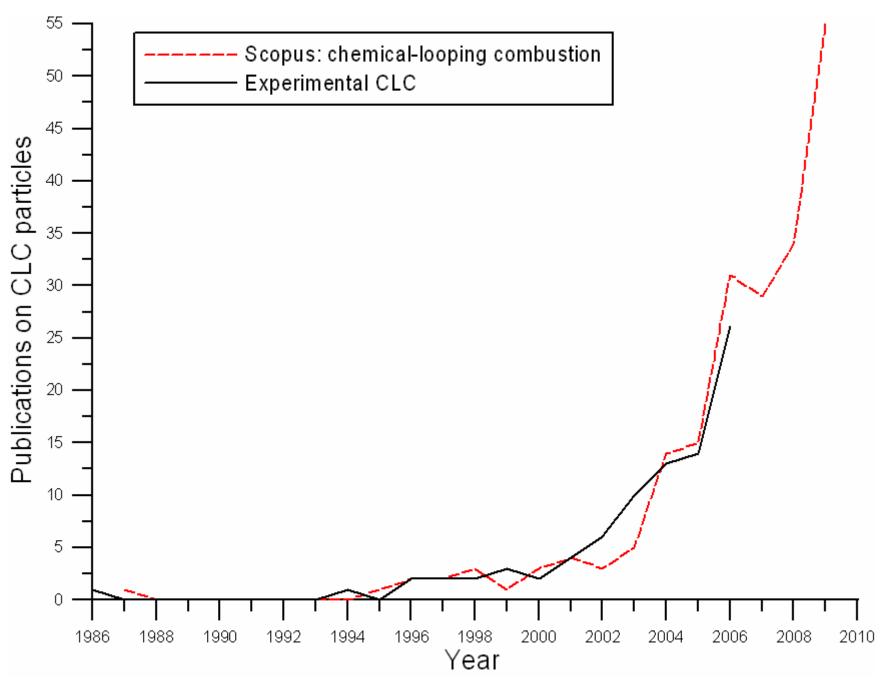
2001 GE EER proposes process for production of H₂ from coal

2001 Lyngfelt proposes 10 MW reactor design based on exp. data

2003 > 100 h of operation in 10 kW unit at Chalmers

2003 ENI proposal of "one-step hydrogen" with water-splitting

2005 Patent application by Chalmers for CLOU (Chemical-Looping with Oxygen Uncoupling), CuO decomposition already noted by Lewis & Gilliland


2006 first operation with CuO > 100 h, CSIC

2006 Rydén proposes "Chemical-Looping Steam Reforming"

2006 solid fuel CLC in continuous operation, Chalmers

2008 120 kW dual CFB operated in Vienna

2010 1st International Conference on Chemical-Looping, in Lyon

Lyngfelt, Lyon March 2010

Chemical-looping steam reforming:

Marriage between conventional steam reforming and chemical-looping atmospheric combustion

Natural gas at 18 €/MWh gives hydrogen fuel with no CO₂ at around 38 €/MWh

That is, a CO_2 free fuel at todays world market price of crude oil, one third of price of petrol.

Chemical-looping applications

fuel	gas	solid	liquid
combustion			
syngas generation			
chemical-looping steam reforming			
pressurized CLC			
CLOU			
water splitting			

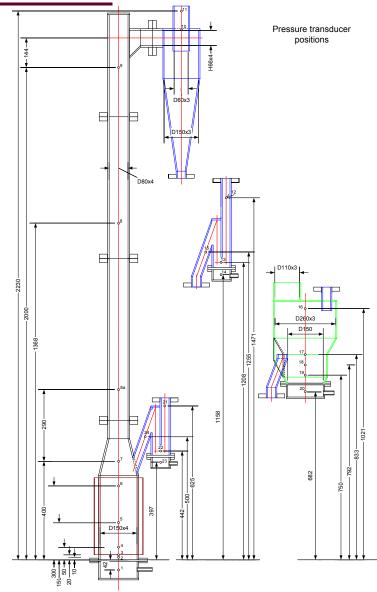
Needed:

- portfolio of oxygen carriers for different applications, and for safety of supply
- operational experience with oxygen carriers, for credibility

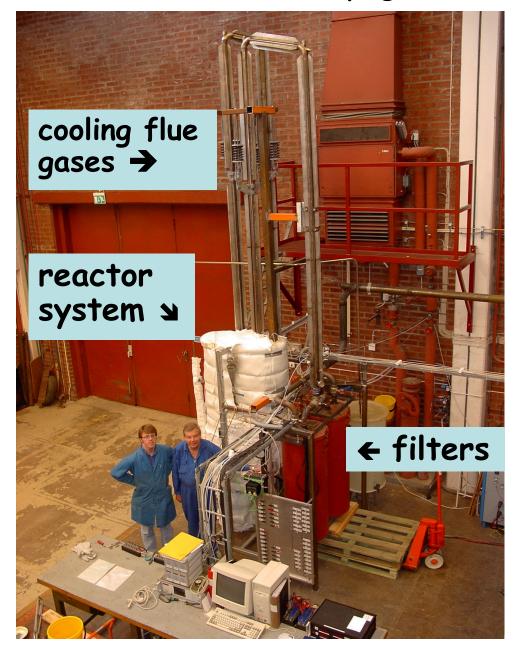
Chalmers 10 kW

Dimensions:

AR: Ø 15 cm, riser 8 cm,


height 2.23 m

FR: Ø 15 cm


Type:

Circulating AR
Bubbling FR, with overflow
Two loop seals separating
AR/FR

Fuel: natural gas

Chalmers' 10 kW chemical-looping combustor 2003

NiO/NiAl $_2O_4$ 40/60, freeze-granulated Fe $_2O_3$ /MgAl $_2O_4$ 60/40, freeze-granulated NiO/NiAl $_2O_4$ 60/40, spin-flash drying NiO/Al $_2O_3$ 18/82, impregnation NiO/NiAl $_2O_4$ 40/60, spray-dried NiO/NiAl $_2O_4$ /MgAl $_2O_4$ 40/42/18, spray-dried

Total time of operation: 1355 h

Key results:

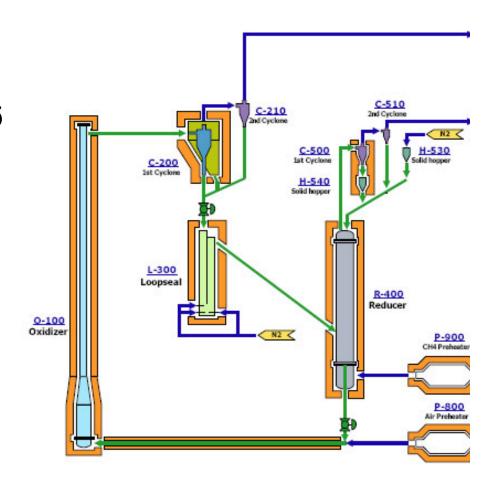
no CO_2 from AR low attrition 0.002%/h high fuel conversion, 98-99%

Korean Institute of Energy Research (KIER) 50 kW

Dimensions:

AR: Ø 10, riser 8 cm,

height: 5 m


FR: Ø 14 cm, height 2.5

m

Type:

Circulating AR
Bubbling FR, outflow via
slide valve
Loop seal after AR
Slide valve + horizontal
tube after FR

Fuel: methane

NiO/bentonite 60/40, powders mixed/dried/crushed calcined $Co_xO_y/CoAl_2O_4$ 70/30, co-precipitation/impregnation

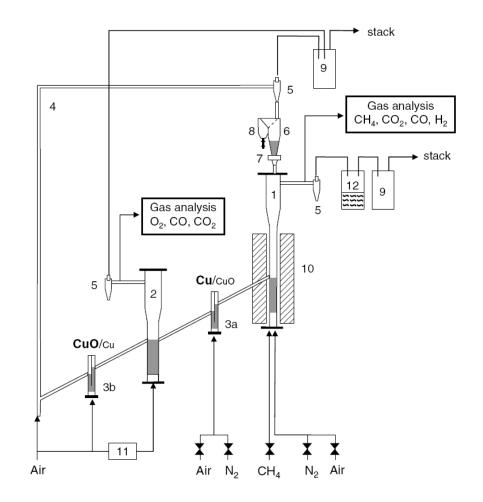
Total time of operation: 3+25 h

Key results:

no gas leakage between reactors no carbon formation high fuel conversion, 98%

CSIC-ICB Zaragoza 10 kW

Dimensions:


AR: Ø 16 cm, height 1.5 m

FR: Ø 10 cm, height 2 m

Type:

Bubbling AR, overflow exit
Bubbling FR, overflow exit
Loop seals after AR and FR
Overflow from AR led to
separate air-blown riser,
solids valve controlling flow
to FR

Fuel: methane

CuO/Al₂O₃ 14/86, wet impregnation, 2 sizes

Total time of operation: 120 h

Key results:

Complete conversion of CH₄ with CuO

No gas leakage between reactors

Long-term operation with CuO verified at 800 C

CuO particles maintaining high reactivity

Chalmers 300 W, design 1/2

Dimensions:

AR: 25x35 mm, 25x25 mm

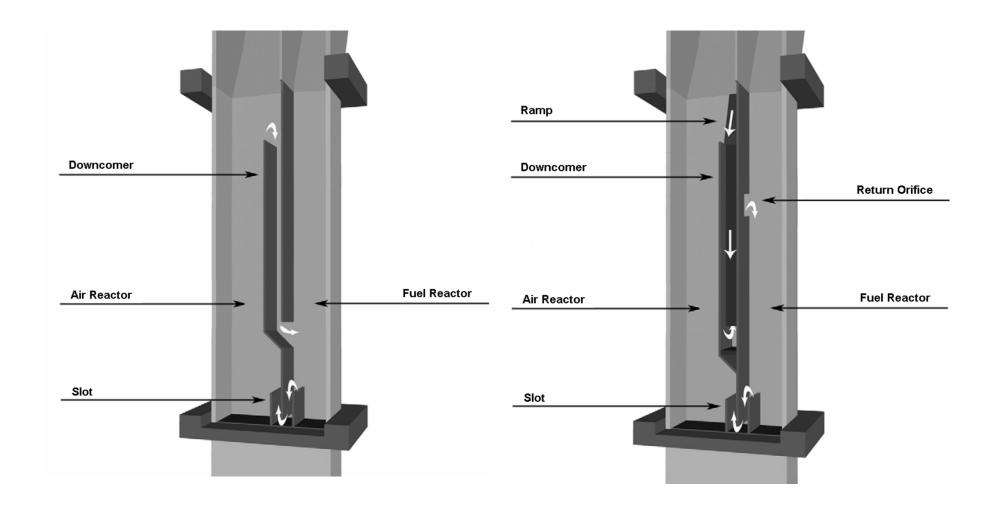
FR: 25x25 mm

Type:

Bubbling AR

Bubbling FR, outflow via

fluidized slot


Particles thrown up from AR led through downcomer to FR

Design 2: Particle seal after

AR, slot improved

Fuels: natural gas, CO/H₂

Design 1

Design 2

NiO/MgAl₂O₄ 60/40, freeze-granulated NiO/NiAl₂O₄ 40/60, freeze-granulated Mn₃O₄/Mg-ZrO₂ 40/60, freeze-granulated Fe₂O₃/Al₂O₃ 60/40, freeze-granulated

Oxygen carrier (design 2):

NiO/MgAl₂O₄ 20/80, freeze-granulated NiO/a-Al₂O₃ 18/82, impregnation $NiO/\gamma-Al_2O_3$ 21/79, impregnation $Fe_2O_3/MgAl_2O_4$ 60/40, freeze-granulated NiO/NiAl₂O₄ 40/60, spray-dried NiO/NiAl₂O₄/MgAl₂O₄ 40/42/18, spray-dried NiO/Mg-ZrO2 40/60, freeze-granulated Fe₂O₃/Mg-ZrO₂ 60/40, freeze-granulated Colormax, up-concentration of Mn minerals Ilmenite, FeTiO₃ natural ore Iron oxide shells CaMn_{0.88}Ti_{0.12}O₃

Lyngfelt, Lyon March 2010

Total time of operation: 776 h

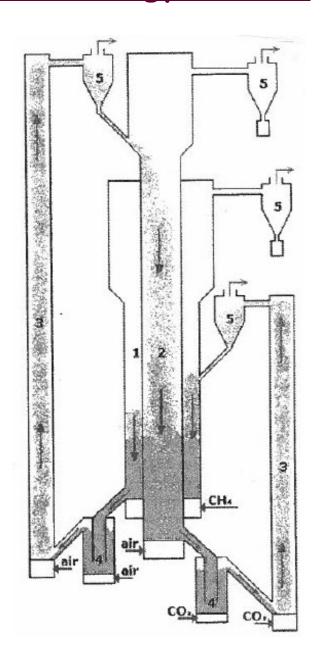
Key results:

Successful operation with a number of materials Demonstration of syngas generation with partial oxidation with complete methane conversion (for chemical-looping autothermal reforming)

Korea Advanced Inst. of Science & Technology, ~1 kW

Dimensions:

AR: Ø 23 mm, height 1.5 cm


FR: Ø 55 mm (with AR inside), height

0.9 m

Type:

Bubbling AR, bottom outflow via loop-seal Bubbling FR, bottom outflow via loop-seal AR inside FR (concentric tubes) Risers circulating particles from AR and FR

Fuel: methane


```
NiO-Fe<sub>2</sub>O<sub>3</sub>/bentonite, NiO/Fe<sub>2</sub>O<sub>3</sub> 100/0
NiO-Fe<sub>2</sub>O<sub>3</sub>/bentonite, NiO/Fe<sub>2</sub>O<sub>3</sub> 75/25
NiO-Fe<sub>2</sub>O<sub>3</sub>/bentonite, NiO/Fe<sub>2</sub>O<sub>3</sub> 50/25
NiO-Fe<sub>2</sub>O<sub>3</sub>/bentonite, NiO/Fe<sub>2</sub>O<sub>3</sub> 25/75
```

NiO-Fe₂O₃/bentonite, NiO/Fe₂O₃ 0/100

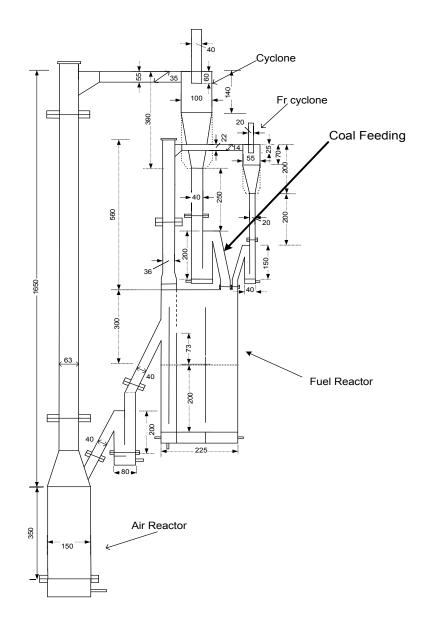
Total time of operation: ?

Key results:

>95% conversion with NiO/Fe₂O₃ \geq 50/50

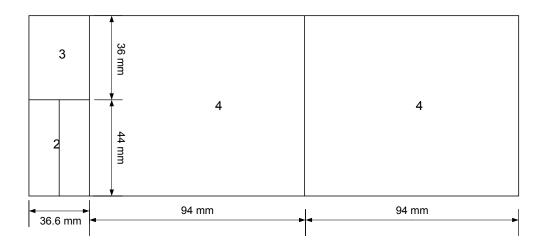
Chalmers 10 kW for solid fuels

Dimensions:


AR: Ø 15 cm, riser 8 cm

FR: 8x19 cm


Type:


Circulating AR
Bubbling FR, with underwear to improve fuel residence time distribution
Small carbon stripper, 36*44 mm, after FR
Loop seals between AR and FR

Fuel: petroleum coke, bituminous coal

Fuel reactor, front and top view

2 carbon stripper

3 high velocity part (below riser)

4 low velocity part, divided into two chambers, and fluidized by steam

Arrows indicate direction of particle circulation

Ilmenite

Total time of operation: 88 h

Key results:

- · proof of concept, solid fuel CLC
- · gas: incomplete oxidation (feeding causes volatiles release above bed)
- · CO₂ from air reactor (from burning char)
- · char loss (poor cyclone)
- · cheap oxygen carrier, ilmenite, 100 €/ton

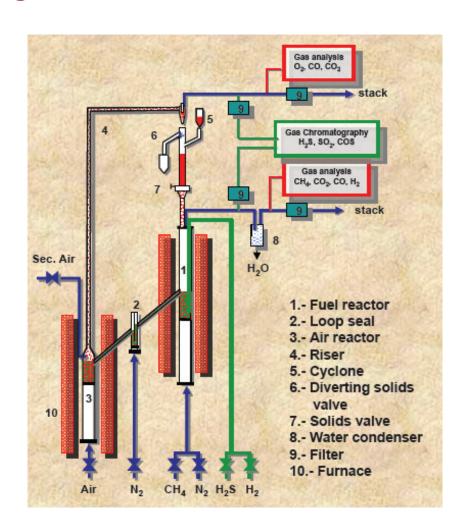
CSIC-ICB Zaragoza, 500 W

Dimensions:

AR: Ø 5 cm, riser 2 cm

FR: Ø5 cm

Type:


Bubbling AR, particles entrained by narrow riser

Bubbling FR, overflow exit

Loop seal after FR

Container + slide valve controls return flow to FR

Fuel: CH_4 , CO, H_2 , CO/H_2 (2:1 and 1:2), C_2H_6 , C_3H_8 , CH_4/C_2H_6 (4:1), CH_4/C_3H_8 (5:1), methane/ H_2S (100, 300, 500, 800, 1000 ppm).

NiO/ γ -Al₂O₃ 21/79, impregnation NiO/ α -Al₂O₃ 18/82, impregnation CuO/Al₂O₃ 14/86, impregnation

Total time of operation: 660 h Key results:

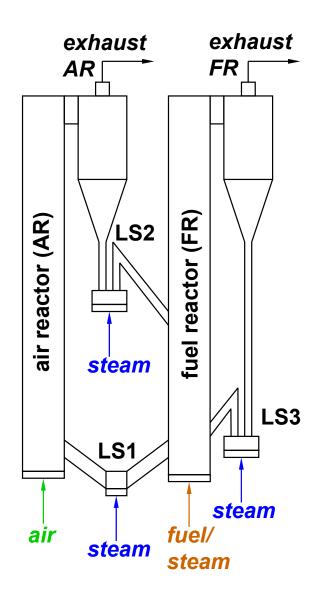
- >98% CH₄ conversion for syngas production
- Effect of sulphur on NiO mapped
- No large difference between methane and other light hydrocarbons

Technical University of Vienna, 120 kW

Dimensions:

AR: Ø 15 cm, height 4.1 m

FR: Ø 16 cm, height 3 m


Type:

Circulating AR, outlet to FR

Circulating FR,

Outflow through FR bottom directly to AR through fluididized connection

Fuel: natural gas, CO, H2

Lyngfelt, Lyon March 2010

Ilmenite

 $NiO/NiAl_2O_4$ 40/60, spray-dried $NiO/NiAl_2O_4/MgAl_2O_4$ 40/42/18, spray-dried

Total time of operation: 390 h

Key results:

Operation at loads 20-145 kW,

Operation at temperatures 780-960 C

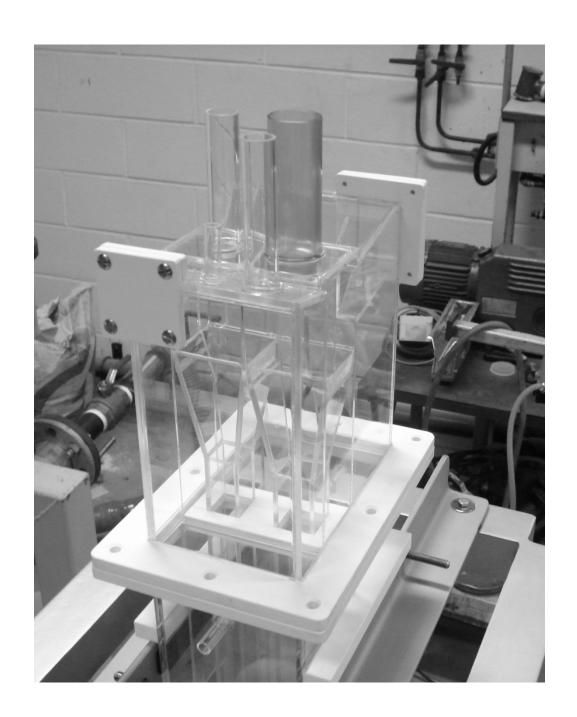
Operation at air ratios 0.8-1.25

Fuel conversion: 95% (CH₄), 99% (H₂, CO)

Alstom, 15 kW

Dimensions:

not known


Type:

Circulating AR,
Circulating FR,
Highly integrated
design.
Seal-pots with double
outlets, one flow
recycled, one to the
other reactor.

Fuel: natural gas First published: 2009

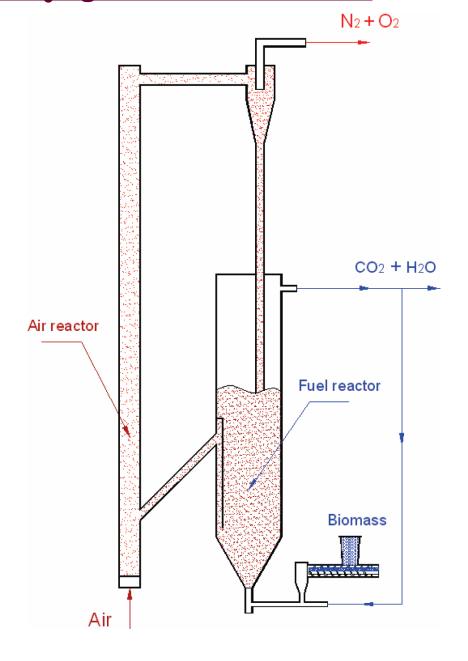
Alstom 15 kW cold flow model

Oxygen carriers: NiO/NiAl₂O₄ 40/60, freeze-granulated NiO/NiAl₂O₄ 40/60, spray-dried NiO/NiAl₂O₄/MgAl₂O₄ 40/42/18, spray-dried NiO/Al₂O₃, impregnation Total time of operation: 100 h Key results: methane conversion up to 99% Publications: 1

Southeast University, Nanjing 10 kW solid fuel

Dimensions:

AR: Ø 5 cm, height 2 m


FR: 23x4 cm, height 1.5 m

Type:

Circulating AR
Spouted FR, outflow via a special direct connection to AR

Fuel: Coal, biomass (pine sawdust),

First published: 2009

Lyngfelt, Lyon March 2010

 Fe_2O_3 , sintered iron oxide powder $NiO/NiAl_2O_4$ 33/67, impregnation

Total time of operation: 230 h

Key results:

Oxygen carrier deterioration (NiO) with coal but no effect with biomass

Location	Unit	Oxides tested	Operation hours	Fuel	First publ.
Chalmers	10 kW	NiO, Fe ₂ O ₃	1350	nat. gas	2004
KIER, S. Korea	50 kW	NiO, CoO	28	nat. gas	2004
CSIC, Spain	10 kW	CuO, NiO	140	nat. gas	2006
Chalmers	0.3 kW	NiO, Mn ₃ O ₄ , Fe ₂ O ₃ , ilmenite, CaMnO ₃	730	nat. gas, syngas	2006
Daejong, S. Korea	1 kW	NiO + Fe ₂ O ₃	a few	CH ₄	2006
Chalmers	10 kW -SF	ilmenite	90	coal, petcoke	2008
CSIC, Spain	0.5 kW	CuO, NiO	660	nat. gas	2009
Vienna, Techn. Univ.	140 kW	ilmenite, NiO	390	nat. gas, CO, H2	2009
Alstom	15 kW	NiO	100	nat. gas	2009
Nanjing	10 kW -SF	NiO, Fe ₂ O ₃	> 100	coal, biom.	2009

Conclusions

- · >3700 h of operational experience
- 48 publications
- · 10 different units, all worked
- · 22 different materials (not all worked):
 - 14 Ni-materials
 - 7 Fe-materials
 - 3 Mn-materials
 - 1 Cu-material
 - 1 Co-material
 - 3 mixed Fe/Ni—materials
 - out of these were 3 ores/waste materials

Ni-materials

- · high reactivity
- proven under long-term testing, >1000 h,
- large-scale manufacture and commercial raw materials verified
- thermodynamics restrict conversion to 99-99.5%

Cu-material

- · High reactivity and complete methane conversion
- Tested > 100 h

Mn-materials

- good reactivity for methane, and high for CO/H₂
- $CaMn_{0.88}Ti_{0.12}O_3$ gives very good conversion and some CLOU effect (releases O_2)

Fe-materials

- poor reactivity towards methane, but good for CO/H₂
- generally more susceptible to agglomerations if reduced too far

Co-material

- high reactivity
- thermodynamically restricted to ~96%

Is CLC a break-through technology for CO₂ capture? (tick the appropriate box)

 \square yes

>100 publications on CLC to be found on:

http://www.entek.chalmers.se/~anly/co2/co2publ.htm

+ links to ICB-CSIC, TU-Vienna

More links to CLC publication lists are welcome!

Heartfelt gratitude to organizers

Thank you

Mercy beaucoup

Tack så mycket