

Negative CO₂ Emissions Techniques and thoughts on how to achieve this

Anders Lyngfelt Chalmers University of Technology Göteborg

LUBIRC seminar Lund, November 1, 2019

Cumulative negative emissions:

≈ 700 Gt

or

≈ 100 tonnes/capita

or

≈ 100.000 SEK/capita

1,5 degree target

Global total net CO2 emissions

Negative emissions with Bio-CCS (CCS = Carbon Capture and Storage)

Principles of Negative Emissions

Plants are good at capturing CO₂. Ways of preventing CO₂ from returning to atmosphere:

- Capture and storage of CO₂ from combustion of biomass/biowaste, Bio-CCS
- Afforestation/Reforestation
- Bio-char for soil improvement
- Agricultural practices to increase carbon content in soil

Non-biogenic paths:

- Enhanced weathering
- Ocean liming (CO₂ capture and storage from lime calcination plus distribution of lime)
- Direct Air Capture (~300 times lower concentration as compared to "chimney" capture)

Bio-CCS/BECCS
Making good use of waste from our employment of biomass

Total biomass extraction today 20 Gt/year (as CO₂) (fossil emissions > 35 Gt/år)

Of these 20 Gt is
1/3 respiration
(human beings +
live stock)
Ideally the rest
could be used for
negative emissions

How is the carbon captured by the biomass used most efficiently for the climate?

CO2 capture, an example

Boundary Dam, Canada. 115 MW_e

Coal power plant with CO₂-capture:

1 Mton CO₂/year

In operation since october 2014.

Owner (Sask Power) says:

Next time 1/3 of cost:

45 \$/ton CO₂

Significant cost and energy penalty of gas separation

Large-scale storage today

Totally stored 30 Mton CO₂/year Appr. 0.1% of global emissions

Sleipner gas platform

SLEIPNER AQUIFER CO2 STORAGE

Storage started 1996 1 million ton CO₂/year (3% Norway's total emission)

Area: 26 000 km²

Depth: 550 to 1500 m

Height: 200-300 m

Porosity: 30-40%

Trapping mechanisms:

- 1) Structural: Tight roof / caprock
- 2) Residual: gets stuck in pores
- 3) Dissolution: dissoved in water
- 4) Mineral: reacts with minerals

Expected leakage:

<1% per thousand years

Greatest risk: other wells (gas, oil)

THE

INVISIBLE HAND,

ADAM SMITH.

IT IS NOT FROM THE benevolence
OF THE BUTCHER, THE BREWER,
OR THE BAKER
THAT WE EXPECT OUR DINNER,
BUT FROM THEIR REGARD
TO their own interest.

Penguin Books GREAT IDEAS To meet climate targets we need the help of the "invisible hand" of the market.

Fossil fuels are too cheap. So we need a price on CO2 emissions.

A more difficult challenge is to find someone to pay for negative emissions.

Who will be willing ...?

Cost CCS/BECCS: ≈0.1 €/kg CO₂ Reasonable?

Carbon dioxide intensity in global economy: 0.5 kg CO₂/€

Thus: 0.1 €/kg CO_2 corresponds to 5% of global economy

Proposal: "Emitter Recovery Liability". Emitters are responsible, and need to pay, for removing any emitted CO₂ from atmosphere. (cf. "*Producer liability*")

Normally, the cost to avoid CO_2 emission is lower than atmospheric CO_2 capture.

Thus: The cost for the economy could be considerably less than 5%.

Proposal for Sweden

Emitter Recovery Liability for non ETS-emissions.

- 23 Mt/year, >half Swedish domestic CO₂ emissions
- mainly transportation fuels

Cost: 23 billion kr/year

0.5% of GDP

2300 kr/Swede, year

2.3 kr/L petrol

In practice, a halving of Swedish emissions.

Chemical-Looping Combustion (CLC)

Oxygen is transferred from air to fuel by metal oxide particles

Inherent CO₂ capture:

- fuel and combustion air *never mixed*
- no active gas separation needed

Potential for large cost reduction of capture

But does it work in practice ??

Yes, it works!!

10 kW gas, 2003

Total chemical-looping operation at Chalmers: 4 000 h in four pilots

300 W gas, 2004

10 kW solid fuel, 2006

100 kW solid fuel, 2011

Worldwide: 11 000 h in 46 pilots

Hours of operation

Type	Oxygen carrier	Gaseous fuel	Liquid fuel	Solid fuel	Total	%
Manufactured	NiO	2677	377	237	3291	29%
	CuO	1130	122	173	1425	13%
	Mn_3O_4	74	17	0	91	1%
	Fe_2O_3	617	77	1072	1766	16%
	CoO	178	0	0	178	2%
	Combined oxides	918	10	289	1217	11%
Natural ore or waste material	Fe ore	488	0	576	1064	9%
	Ilmenite	538	150	788	1496	13%
	Mn ore	354	0	381	735	6%
	CaSO4	0	0	75	75	1%
Total manufactured		5594	603	1771	7968	70%
Total natural/waste		1380	150	1820	3370	30%
Total		6974	753	3591	11338	100%
Publications					212	

In addition there is >20 000 h of operation with oxygen carriers in commercial circulating fluidized bed boilers.

Circulating fluidized-bed boilers

Chemical Looping Combustion

•	
big	COST

Type of cost	estimation, €/tonne CØ2	range, €/tonne CO ₂	Efficiency penalty, %		
CO ₂ compression	10	10	3		
Oxy-polishing	6.5	4-9	0.5		
Boiler cost	1	0.1-2.3	-		
Oxygen carrier	2	1.3-4	-		
Steam and hot CO ₂ fluidization	0.8	0.8	0.8		
Fuel grinding	0.2	0.2	0.1		
Lower air ratio	-0.5	-0.5	-0.5		
<u>Total</u>	<u>20</u>	<u>15.9-25.8</u>	3.9		
	small cost				

Demonstration without CO₂ capture can significantly reduce costs.

- 1) Verify concept, and potential advantages wrt. alkali and NO_x
- 2) Add CO₂ capture

¹Lyngfelt, A., and Leckner, B., A 1000 MW_{th} Boiler for Chemical-Looping Combustion of Solid Fuels - Discussion of Design and Costs, *Applied Energy* 157 (2015) 475-487

Biomass in CLC

High volatiles content could give problems with gas conversion

Could low ash content make manufactured oxygen carriers possible?

Biomass difficult fuel alkali gives low ash-melting temperature

Could CLC facilitate the use of biomass in boilers? (positive experience with OCAC)

Could range of possible fuels be extended?

STATUS OF CLC

>11 000 h of operation in 46 pilots with >70 different oxygen carrier materials, of which >3000 h with low-cost materials (e.g. ores of ilmenite, iron and manganese)

SOLID FUELS:

- >3000 h of operation in 20 pilots
- major cost of CO₂ capture, i.e. gas separation, is uniquely avoided (depending on gas conversion)
- o unique potential for low energy penalty
- transparent cost evaluation based on difference compared to circulating fluidized bed boiler: 16-26 €/ton
- o cost expected: less than half of competing technologies
- could likely be demonstrated at low moderate cost using existing biomass gasifier (e.g. GobiGas)
- no incentives for negative emissions

Conclusions CLC

CLC boiler very similar to CFB boiler (=circulating fludized-bed boiler)

Highly concentrated CO₂ stream can be obtained at small added cost

Major cost likely downstream

CLC can be demonstrated at lower cost without capture

Swedish CO₂ emissions from biomass, (larger point sources):

31 Mt/år

Sweden's domestic fossil CO₂ emissions are:

43 Mt/year

Key Messages

Carbon dioxide budget soon exhausted - large negative emissions are needed

Several principles for negative emissions

Bio-CCS safest

- capture of CO₂ from biomass + geological storage

Storage - eternal storage is not needed, less safe storage also relevant ("e.g. forestation")

Bio-CCS

- climate-efficient use of limited resource
- biogenic carbon dioxide is valuable waste (can give minus emissions) significant potential
- technology well known (simple), but few large-scale plants

Key Messages

Negative emissions must be financed

Chemical-Looping Combustion of biomass, Bio-CLC, has potential for dramatic reduction of CO₂ Capture cost

CCS not really expensive - corresponds to a few% of global GDP -Rational solution, "Emitter Recovery Liability", emitters pay for removing the CO₂ from the atmosphere

Applying "Emitter Recovery Liability" on half of Swedish emissions. Cost:

- 2300 kr/Swede
- 0.5% of GDP
- 2,3 kr/L petrol

http://negativeco2emissions2020.com/

PRINCIPLE

metal oxide (MeO) transfers oxygen from air to fuel

 \Rightarrow

no separation needed

PRACTICE

well established circulating fluidized-bed technology

PURPOSE

Thank you!!! Questions

