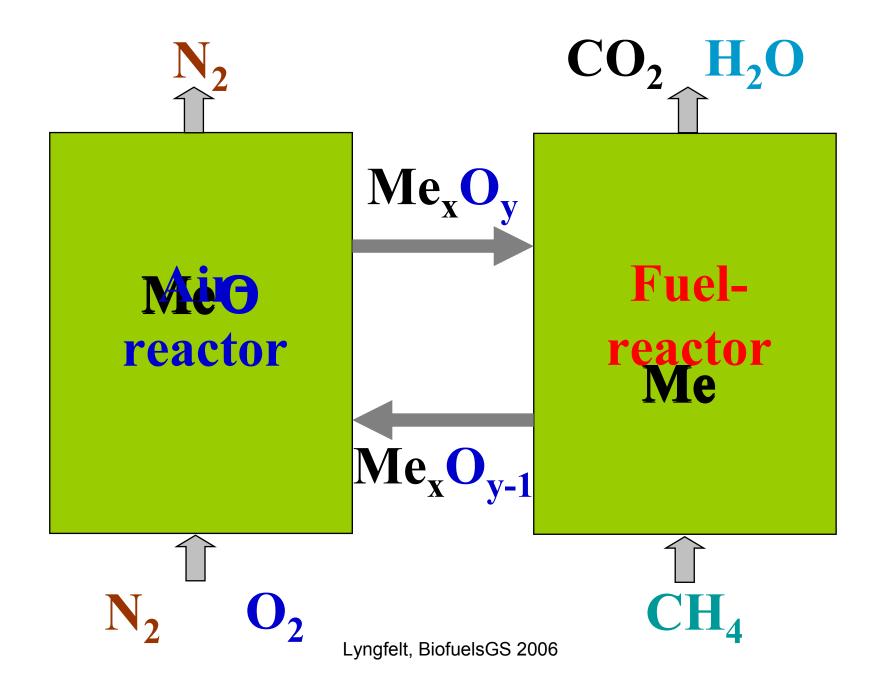
CHEMICAL-LOOPING COMBUSTION FOR CO2 CAPTURE

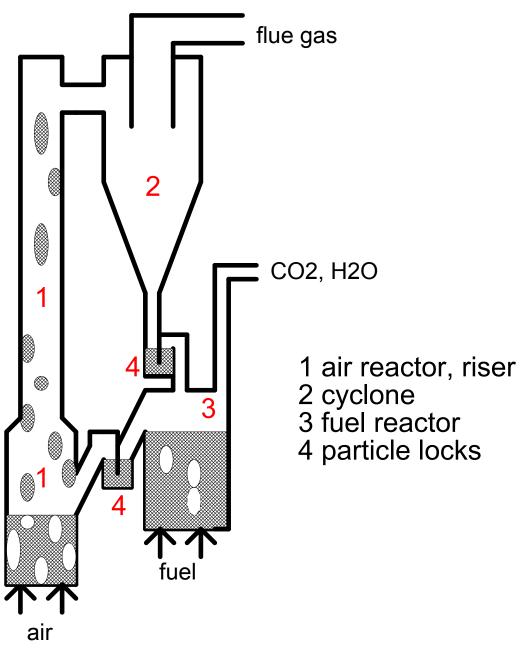
_

WHAT HAS BEEN ACHIEVED?

Anders Lyngfelt, Chalmers Tekniska Högskola, Göteborg

> BiofuelsGS Annual Meeting Liseleje, August 21, 2006


> > Lyngfelt, BiofuelsGS 2006


Chemical-looping combustion

- a new principle for oxidizing fuels using metal oxides as oxygen carriers, transferring oxygen from combustion air to fuel
- no mixing of combustion air and fuel => CO_2 can be obtained pure, without (!) separation of gases

Energy production from oxidation of hydrocarbons

respiration	~2 000 000 000 BC
fire	~500 000 BC
fuel cell	1839
chemical-looping combustion	2003

Lyngfelt, BiofuelsGS 2006

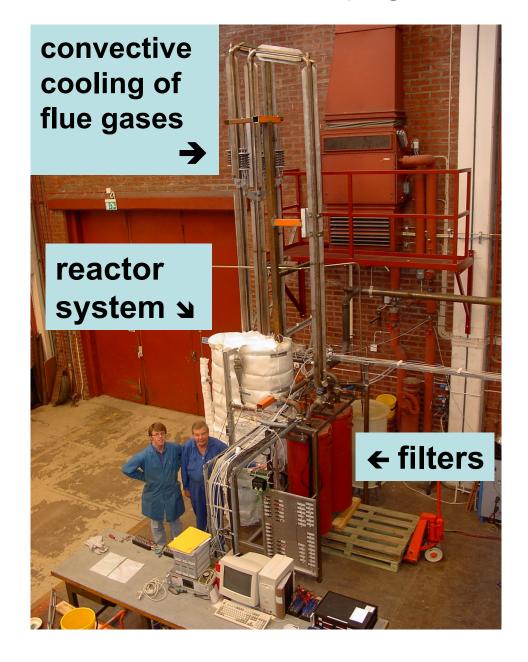
chemical-looping combustion, status 2002:

- "paper concept",
- process never tested!
- a limited number of particles tested in a limited number of cycles

What has happened since then?

- >300 particles have been tested:
- active oxides primarily NiO, CuO, Mn₃O₄,
 Fe₂O₃
- support materials, e.g. Al₂O₃, TiO₂, SiO₂,
 ZrO, sepiolite, Al₂MgO₄ ...
- various mixing ratios active oxide/support
- production methods: extrusion, freezegranulation, wet methods, impregnation ...
- heat treatment: typically 900-1300 C

Pros and cons for the active oxides


	Fe	Mn	Cu	Ni
Reactivity		-	+	++
Cost	++	+	-	
Health				-
Thermodynamics				_1
Reaction with CH ₄			+2	
Melting point			_3	

¹maximum conversion 99-99.5%

²exothermic reaction in fuel reactor

³melting point Cu: 1085 C

Chalmers' 10 kW chemical-looping combustor 2003

Conclusions (Ni-based particles):

No CO₂ from air reactor:

- No leakage between reactors
- No significant carbon formation
- ♦ 100% CO₂ capture

Sand tests show no leakage from air to fuel reactor:

Almost pure CO₂ possible
 1.2% H₂, 0.6% CO with NiO

Conversion of fuel:

• 99.5% at 800

Operation

- Stable and easy to control
- # 105 h operation CLC (13 days)
 without change of particles
 - ~300 h circulation

Investigation of particles after 105 h

- No loss in reactivity
- No loss in particle strength

Loss of fines very low:

Particle lifetime >40,000 h (?)

Low particle cost:

Small 300 W chemical-looping combustor

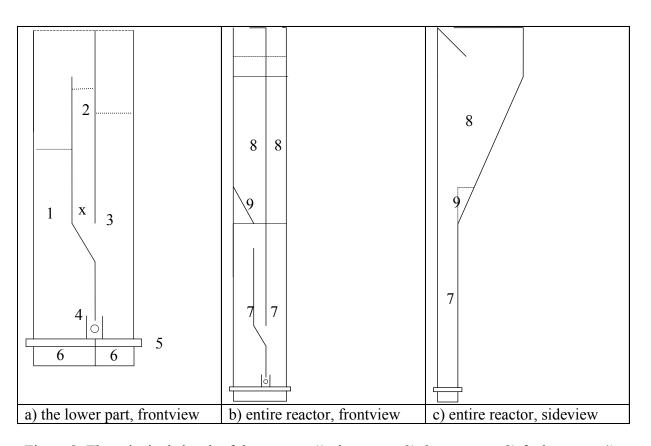
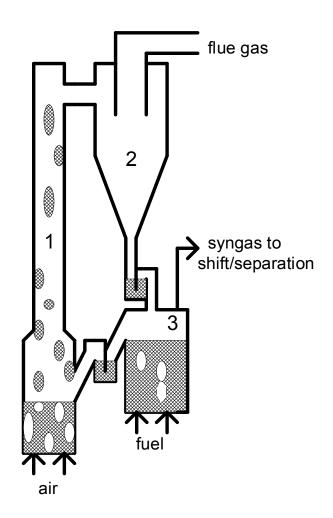
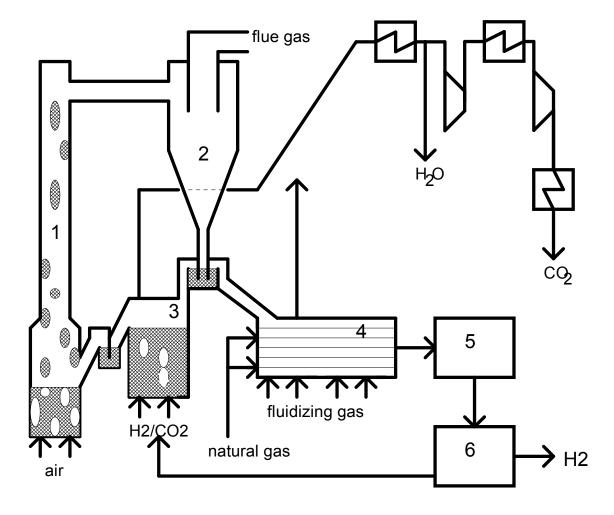




Figure 2. The principal sketch of the reactor. 1) air reactor, 2) downcomer, 3) fuel reactor, 4) slot, 5) gas distributor plate, 6) wind box, 7) reactor part, 8) particle separator, 9) leaning wall. Fluidization in the downcomer (x) and slot (o) is also indicated. The dashed lines indicates the bed heights during combustion.

Chalmers' 300 W chemical-looping combustor 2004

Chemical looping reforming by partial oxidation

Hydrogen production by steam reforming with chemical-looping as heat source and separation off-gas as fuel.

Lyngfelt, BiofuelsGS 2006

Chalmers' 10 kW chemicallooping combustor for *solid fuels*, 2005

Lyngfelt, BiofuelsGS 2006

Testing in chemical-looping combustors:

	unit	particle	operation h (hot time ^d)	fuel ^f
1	^a Chalmers 10 kW	NiO/NiAl ₂ O ₄	105 (300)	n.gas
2a	^a Chalmers 10 kW	Fe ₂ O ₃ -based	17	n.gas
2b	Chalmers 10 kW	Fe ₂ O ₃ -based	16	n.gas.
3	^a S Korea 50 kW	Co ₃ O ₄ /CoAl ₂ O ₄	25	n.gas
4	^a S Korea 50 kW	NiO/bentonite	3 ⁱ	n.gas.
5	^b Chalmers 300 W	NiO/NiAl ₂ O ₄	8 (18) ⁹	n.gas
6	^b Chalmers 300 W	NiO/MgAl ₂ O ₄	30 (150)	n.gas/syngas
7	^b Chalmers 300 W	$Mn_3O_4/ZrO_{2, Mg-st.}$	70 (130)	n.gas/syngas
8	^c Chalmers 300 W	Fe ₂ O ₃ /Al ₂ O ₃	40 (60)	n.gas/syngas
9	^b CSIC, 10 kW	CuOimpregnated	2×100	n.gas
10	^b Chalmers 300 W	NiO/MgAl ₂ O ₄	41 (CLR ⁹)	n.gas(CLR ^g)
11	Chalmers SF ^j	confidential	18	bit. coal

^apublished 2004, ^bpublished/accepted 2005-2006, ^csubmitted ^d total time fluidized at high temperature, ^esame particle as used 100 h in 10 kW unit, ^fn.g. = natural gas, s.g. = syntesgas, ^gchemical-looping reforming, ⁱparticles fragmentated, ^j10 kW solid fuel CLC,

Chemical-Looping Combustion

Reactor system (fluidized beds):

- well established
- commercially available
- simple
- moderate costs

Oxygen-carrier particles:

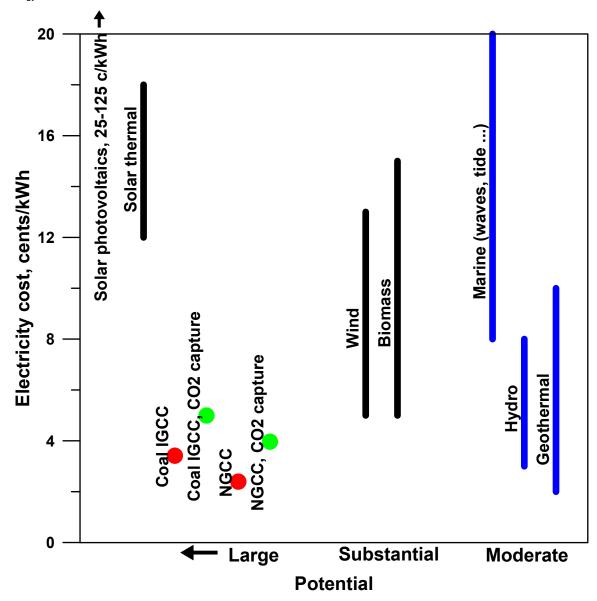
- very encouraging results
- scale-up of particle manufacture
- raw materials
- long-term testing needed

Applications of chemical-looping combustion for CO₂ capture:

Combustion of gaseous fuel, natural gas, refinery gas, syngas

Chemical-looping reforming, i.e. hydrogen production

Combustion of solid fuels


Conclusions

Successful testing of: oxygen carriers based on Ni, Fe, Mn, Cu and

chemical-looping reforming for hydrogen production.

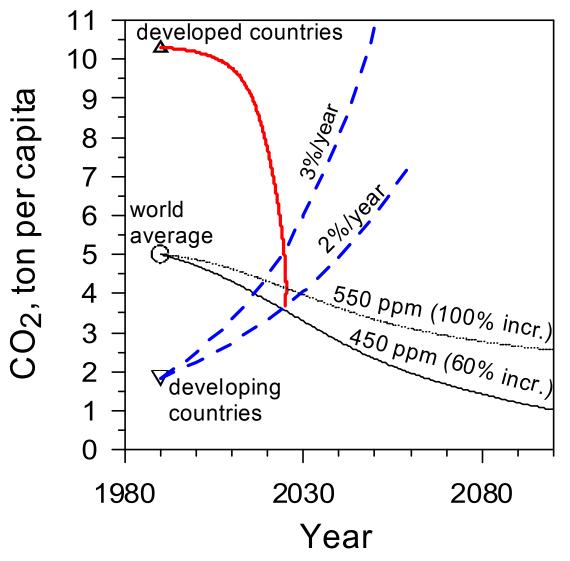
Co in actual chemical looping combustors

chemical-looping combustion with solid fuels (potential: <10 €/ton CO₂ captured)

Costs from: United Nations Development Programme, UNs Department of Economic and Social Affairs, and World Energy Council (2000) World Energy Assessment: Energy and the Challenge of Sustainability

```
CI = Carbon Intensity = 0.9 kg CO2/$

AC = avoidance cost ~ 0.05 $/kg CO2


Cost as fraction of GDP = CI*AC = 4.5%
```

AC, \$/kg CO2 Biofuel 0.06 Wind =0.07 Solar thermal =0.15 Solar photovoltaics =1.5 CO2 storage 0.002 0.02-0.05 CO2 capture & storage CLC CO2 capture solid fuels 0.01 ? Swedish CO2 tax 0.1

Year 1800: 280 ppm

Today: 360 ppm (30% incr.) +0.6 C

Future: 550 ppm (100% incr.), +2.5 (1.5-4.5) C

Lyngfelt, BiofuelsGS 2006

IPCC report on CO₂ capture and storage:

Geologic storage potential estimated to 1,700 - 10,000 Gton CO₂

corresponds to today's global emissions for 50 - 300 years