Alkali Emissions Measurements in Continuous CLC Operation

Ivan Gogolev gogolev@chalmers.se

Project: Biomass Combustion Chemistry with Oxygen Carriers

Project Leader: Prof. Anders Lyngfelt

Funding: Vetenskapsrådet

Alkali Related Issues in Combustion

Alkali Related Issues

Gas-Phase Alkali Release

Fouling and corrosion of heat exchange equipment

Alkalis in the bed material

Alkali silicates form sticky melts

(a) Agglomeration from ash melting.

(b) Agglomeration from ash coating.

Prominent modes of agglomeration (Zimmerman et al. 2016)

Alkalis in CLC of biomass

Main Hypotheses:

- Most alkalis will be released to the gas phase in the FR
 - AR alkali release should be minimum.
 - Less issues for HX surfaces (most process heat is recovered in the AR)
 - FR flue gas alkali will be easier to handle: lower flow rate, can operate FR HX at lower temp.
- 2. Overall gas-phase alkali release should be comparable to combustion of biomass

????

Alkali emissions measurement in 3 pilot systems

Chalmers 100 kW CLC Ilmenite & CaMn

Chalmers 10 kW CLC Ilmenite

VTT 60 kW D-CFB CLC Ilmenite, Braunite

Methodology – SID Alkali Measurement System

SID-based Alkali Measurement System

- Flue gas sampled at 900-1000° C
- 3 stages of sample dilution
- dilution tracking with CO₂/O₂

Surface Ionization Detector (SID)

Results: SID-Based Alkali Measurement System

- Modular and transportable
- Sampling from AR and FR
- Dilution tracking for FR and AR
- Optimized for CLC conditions
- First measurement of gas phase alkalis in CLC
- Now tested at 5 different units

Results: Alkali Emissions vs. Fuel Alkali Content

Fuel Reactor Emissions

- Emission increase with fuel alkali content
- Trend is consistent in all campaigns

Results: Alkali Emissions vs. Fuel Alkali Content

Air Reactor Emissions

No consistent trend

Results: Alkali Release Distribution

		100 kW Ilmenite & CaMn		10 kW Ilmenite		60 kW D-CFB Ilmenite		60 kW D-CFB Braunite	
Fuel	mg alkali/kg fuel	FR	AR	FR	AR	FR	AR	FR	AR
Wood Pellets	324					1.9%	0.7%	2.9%	1.0%
Black Pellets	513	0.7%	1.8%	1.7%	1.5%				
Wood Char	1670					1.3%	0.1%	1.3%	0.5%
Pine Forest Residue	2200			0.7%	0.6%				
Swedish Wood Char	2850			1.2%					
German Wood Char	4510								
Straw Pellet Mix	5890	1.1%	1.1%	0.7%	0.1%				
Straw Pellets	6930							4.4%	2.8%

Alkali Emissions Distribution:

- 0.8 7.2 wt% of fuel alkalis are released to the gas phase
- AR emissions can be significant
- Several cases where AR emissions = or > FR emissions

Results: Origin of AR emissions

From Combustion/Gasification experiments:

- <10% K is released in devolatilization
- Majority of K release occurs above 700° C
- 60-80% of K is retained in the ash

Results: Origin of AR emissions

Carryover of condensed alkalis to AR can occur via carryover of:

- Unconverted char
- 2. Ash

- Both can contain undecomposed K compounds
- Continue gas phase release of alkali in the AR
- AR temperature is up to 100°C higher than the FR

Potassium compound release rates vs. Temperature (Knudsen et al. 2004)

Results: Alkali Retention

Fuel	mg alkali/kg fuel	100 kW Ilmenite & CaMn	10 kW Ilmenite	60 kW D-CFB Ilmenite	60 kW D-CFB Braunite
Wood Pellets	324			97.5%	96.9%
Black Pellets	513	97.5%	96.8%		
Wood Char	2200		98.7%		
Pine Forest Residue	1670			98.6%	98.2%
Swedish Wood Char	2850				
German Wood Char	4510				
Straw Pellet Mix	5890	97.8%	99.2%		
Straw Pellets	6930				92.8%

Alkali Retention:

- Retention is >92% for all oxygen carriers, fuels, and tests
- Retention was confirmed by bed material and filter material analysis

Results: Alkali Retention

Retention can be divided into

- 1. Retention by fuel ash formation process → estimated at 60-80 wt%
- 2. Effect of OC material → 10-30 wt%

Both Ilmenite and Braunite can form the following stable compounds at CLC temperatures:

- K-silicates
- K-aluminosilicates
- K-manganates
- Ilmenite can also form K-titanates

Results: OCAC vs CLC Alkali Emissions

Alkali emissions (Ilmenite & Wood Char)

Alkali emissions (Braunite & Wood Char)

Results: OCAC vs CLC Alkali Emissions

OC Material	Fuel	mg alkali/kg fuel	OCAC FR emissions (mg K/kg fuel)	CLC FR emissions (mg K/kg fuel)	% increase with CLC
Umanita	Wood Pellets	324	1.9	6.1	217%
Ilmenite	Wood Char	1670	2.3	24.4	983%
	Wood Pellets	324	9.2	8.7	-5%
Braunite	Wood Char	1670	3.2	21.4	564%
	Straw Pellets	6930	19.4	305.3	1470%

Effect of FR atmosphere:

- FR emissions in CLC mode higher than in OCAC mode
- Difference cannot be explained by temperature difference of the two modes

Results: OCAC vs CLC Alkali Emissions

CONCLUSIONS

Conclusions:

- SID based measurements are well suited for alkali measurement in CLC
- <10% of alkalis are release to the gas phase in CLC
- FR alkali emissions are typically higher than AR, but AR emissions can be significant
- >90% of alkalis are retained in condensed form
- CLC operation releases more gas-phase alkalis vs. OCAC operation
- FR's steam content is responsible for increased emissions levels

Thank You!