CO₂ Capture with Chemical-Looping Combustion (CLC)

Anders Lyngfelt

PRINCIPLE

metal oxide (MeO) transfers oxygen from air to fuel

PRACTICE

fluidized-bed technology

PURPOSE

Why chemical-looping combustion (CLC)?

Oxygen is transferred from air to fuel by metal oxide particles

Inherent CO₂ capture:

- fuel and combustion air never mixed
- no active gas separation needed
- large costs/energy penalties of gas separation avoided

Potential for real breakthrough in costs of CO₂ capture

But does it work in practice ??

YES, IT WORKS!

300 W gas, 2004

10 kW solid fuel, 2006

100 kW solid fuel, 2011

Total operation at Chalmers: 3700 h

10 kW gas, 2003

Options for CLC

Capture CO₂ from fossil fuel combustion, (or hydrogen production)

Capture CO₂ from air with biomass combustion, (negative emissions)

Need for negative emissions??

Carbon budget for max 1.5°C and 2°C:

200 and **800** Gton CO₂

Emissions today >35 Gton/yr:

>>> 6 - 25 years left of todays emissions

Negative emissions will be needed to meet climate targets

Tobias Mattisson

Magnus

Rydén

THANK YOU!

Carl Linderholm

Anders Lyngfelt

>300 CLC publications and 7 CLC songs at:

http://www.entek.chalmers.se/lyngfelt/co2/co2.htm