4 Presentations from the project: Biomass Combustion Chemistry with Oxygen Carriers

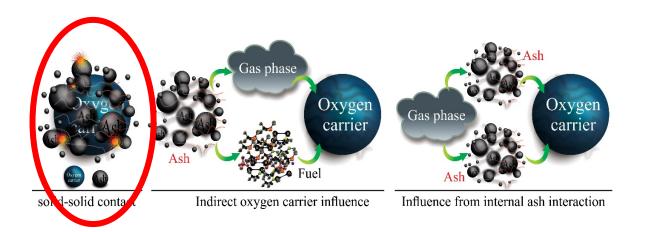
- Ash components and oxygen carriers, main challenges, Henrik Leion
- Gas-phase alkali interactions with reactor walls and OC in a laboratory reactor, Viktor Andersson
- Alkali emissions measurements in continuous CLC operation, Ivan Gogolev
- CLC with K, Na impregnated charcoal in a batch fluidizedbed reactor, Daofeng Mei

Biomass Combustion Chemistry with Oxygen Carriers

- Energy technology, Chalmers
- Department of Chemistry & Molecular Biology, University of Gothenburg
- Energy and Material, Chalmers

Ash components and oxygen carriers, main challenges

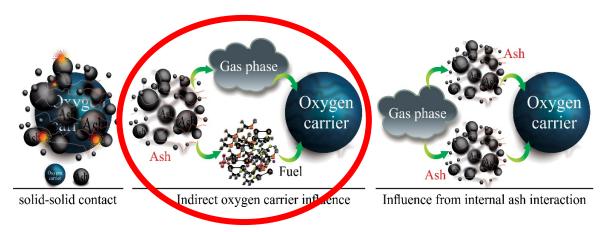
Henrik Leion
Energy and Materials
Chemistry and Chemical Engineering
Chalmers University of Technology



Outline of this presentation:

- General mechanism on oxygen carrier ash interaction with known examples
- Example of results on oxygen carrier ash interaction in fixed bed
- Challenges with oxygen carrier ash interaction

Suggestions for main mechanisms.

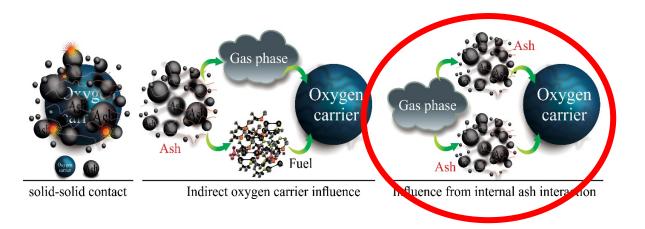


Examples:

Quartz and clay minerals generally don't react with the oxygen carrier Keller et al. Chem. Eng. Research and Design 92, 2014

Fe₂O₃ or CaSO₄ can add oxygen carrier ability Rubel et al., Fuel, 88, 2009; Bao, Applied Energy 115, 2014

CaO can form a shell on carriers (but without affecting reactivity)
Azis, Chem. Eng. & Technology 36, 2013



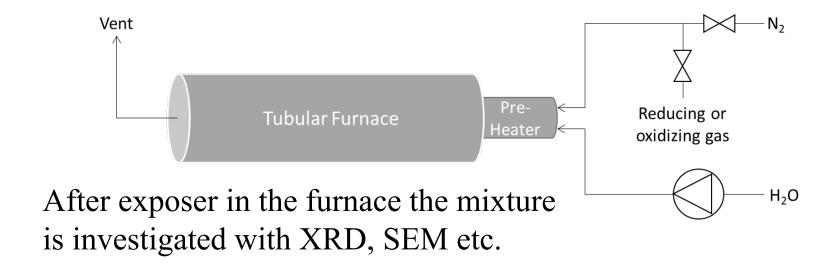
Examples:

K penetrating ilmenite accelerating Ti-Fe separation Knutsson et al. Applied Energy 157, 2015

K enhances gasification Keller et al. Combustion and Flame 158, 2011

CaO enhances water-gas-shift reaction Teyssié et al. Energy and Fuels 25, 2011

Examples:

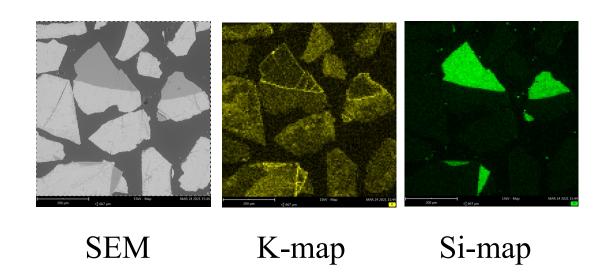

Alkali creates melts with SiO₂

P + K can, more or less, block the oxygen carrier Hildor et al. ACS Omega 5, 2020; Störner et al. Energy and Fuels 34, 2020

P + Ca can, more or less, block the oxygen carrier Staničić et al. Chem. Eng. Research and Design 149, 2019

Fixed bed experiment:

Oxygen carriers are mixed with ashes or ash components (salts)

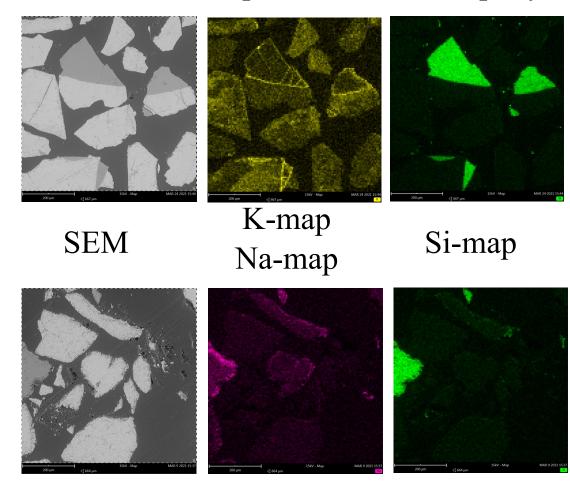

Fixed bed provides high solid-solid contact (worst case scenario)

Easy to compare different cases

Simple to compare with thermodynamic data

Cross sections of partials casted in epoxy

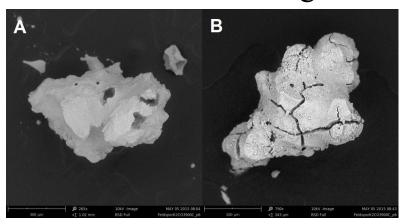
Ilmenite (with sand) mixed with K₂SO₄
Reducing condition H₂ in H₂O, 900°C

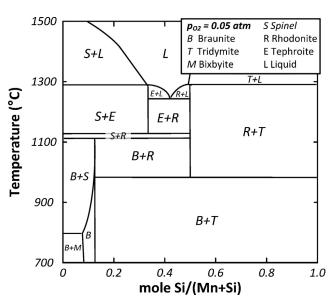

Ilmenite absorbs K just as well or better than sand

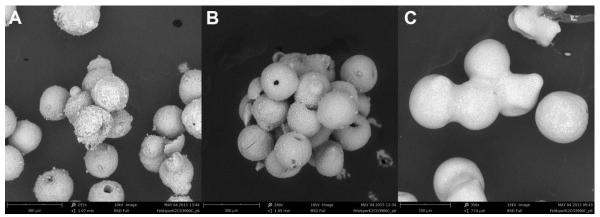
Cross sections of partials casted in epoxy

Ilmenite (with sand) mixed with K₂SO₄

Reducing condition H₂ in H₂O, 900°C


Ilmenite (with sand) mixed with Na₂SO₄


Ilmenite absorbs K but Na stays on the surface


Unpublished results

Overview SEM images

Sand mixed with K₂CO₃ Mn₃O₄ mixed with K₂CO₃

Reducing condition H₂ in H₂O, 850°C

94%wt Mn_2O_4 6%wt SiO_2 75%wt Mn_2O_4 25%wt SiO_2 90%wt Mn_2O_4 10%wt SiO_2

Leion et al. 25th EUBCE, 2017

Challenges with oxygen carrier ash interaction

Ash is generated in the fuel reactor, hence reducing conditions are most relevant. (similar to gasification but with solid oxygen present)

Conventional combustion ash is generated in the presence of air (similar to OCAC, CLOU or the air reactor)

Trends from conventional ash chemistry might not hold since ash components can interact with the metal oxide.

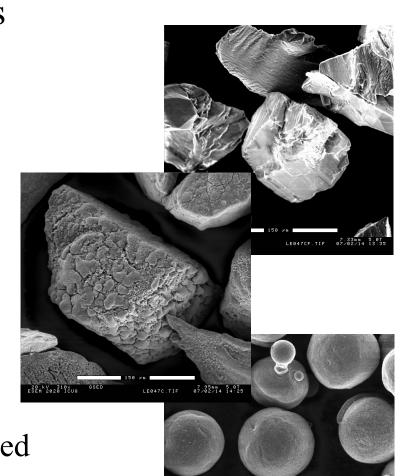
Impurities in the oxygen carrier might be just as important

A strategy for depleted oxygen carriers is needed

Measuring ash component and is challenging

We have a lot of different Oxygen Carriers and several of different ashes

 $\begin{array}{cc} \text{CuO/Cu}_2\text{O/Cu} & & \\ \text{FeTiO}_3/\text{Fe}_2\text{TiO}_5+\text{TiO}_2 \end{array}$


 $MnFeO_3/(MnFe)_3O_4$

NiO/Ni

Fe₂O₃/Fe₃O₄/FeO/Fe

CaMnO₃/CaMnO₃₋₈

Vassilev et al. (Fuel, 208, 2017) presented 141 different ash compositions (some were mean values)

Thank you for your attention!

Henrik Leion
Energy and Materials
Chemistry and Chemical Engineering
Chalmers University of Technology

