

### Negative CO<sub>2</sub> Emissions

An Analysis of the Retention Times Required with Respect to Possible Carbon Leakage

Anders Lyngfelt<sup>a,</sup>, Daniel J.A. Johansson<sup>a</sup>, Erik Lindeberg<sup>b,</sup>

<sup>a</sup>Chalmers University of Technology, Sweden

<sup>b</sup>SINTEF, Norway

GHGT14 October 21-25, 2018 Melbourne









The Paris agreement to stay <u>well below</u> 2°C and pursue .... to limit .... to 1.5 degrees:

Carbon dioxide budget for max 1.5°C and 2°C

200 - 800 Gt

or 5-20 years with present 40 Gt/y



Negative emissions are needed to reach climate targets



**100 tonnes** per now living human being

or ≈10.000 € per now living human being



# Purpose of paper we need negative emissions

### **DIFFERENT OPTIONS DISCUSSED**

- Bio-CCS of BECCS
- Afforestation/reforestation
- Altered agricultural practices to increase carbon in soil
- Biochar
- Direct Air Capture (DAC)
- Enhanced Weathering

# THEY COME WITH DIFFERENT STORAGE SAFETY AND EXPECTED LEAKAGE RATES

WHAT LEAKAGE RATES ARE ACCEPTABLE?

### Model

Response to emission

$$f(t) = A_0 \cdot \left( \sum_{j} B_j \cdot e^{-t/\tilde{\tau}_j} \right) + \sum_{i} A_i \cdot e^{-t/\tau_i}$$

where Aj represent fast response, and Bj represents slower response (i.e. dissolution of seafloor carbonates, weathering of terrestrial carbonate rocks and silicate weathering)

| i | $A_i$   | $\tau_i$ [yr]         |
|---|---------|-----------------------|
| 0 | 0.217   | -                     |
| 1 | 0.186   | 1.186                 |
| 2 | 0.338   | 18.51                 |
| 3 | 0.259   | 172.9                 |
|   |         |                       |
| j | $B_{j}$ | $\tilde{\tau}_j$ [yr] |
| 1 | 0.54    | 5.5 k                 |
| 2 | 0.14    | 8.2 k                 |
| 3 | 0.32    | 200 k                 |
|   |         |                       |



### Effect of **leakage time scale**\*

Assumption: all leaks, but with different leakage time scales

\*1%/year is a leakage time scale of 100 years



Figure 2. Increased stock of atmospheric  $CO_2$  from 800 Gt of  $CO_2$  for different leakage rates. For comparison emission of 800 Gt is also shown.

Table 3. Peaks reached for the different leakage time scales shown in Fig. 2.

| Leakage case | CO <sub>2</sub> peak |     | Peak year | Fraction at |
|--------------|----------------------|-----|-----------|-------------|
|              | Gt                   | ppm |           | peak year   |
| No capture   | 402                  | 52  | 2111      | 100%        |
| Leakage time |                      |     |           |             |
| scale, years |                      |     |           |             |
| 100          | 246                  | 32  | 2263      | 61%         |
| 300          | 177                  | 23  | 2568      | 44%         |
| 1000         | 137                  | 18  | 4265      | 34%         |
| 3000         | 105                  | 14  | 7125      | 26%         |
| 10000        | 67                   | 9   | 14262     | 17%         |
| 30000        | 32                   | 4   | 46588     | 8%          |
| 100000       | 11*                  | 1*  | 100000*   | 3%*         |

<sup>\*</sup> at 100 000 years peak not reached

Even if all leaks, the delay of the emissions gives (as compared to emitting the same amount)

- a significantly delayed peak
- a significantly lower peak
- only a few ppms for longer leakage time scales

Effect of total amount leaked

Assumption: all leaks, but with different total amounts leakage time scale is 1000 years (left) and 10 000 years (right)





If a very large amount is stored and leaks

- very high increases in  ${\rm CO_2}$  are seen
- it doesn't help even with a long leakage time scale

Note: 24 000 Gt is of the order of the total reserves of fossil fuels, or 600 years of todays emissions.

### A mix of different leakage time scales

Assumption: 20 – 100% leaks

| Leakage case (type)                   | CO <sub>2</sub> stored, Gt (fraction) | Fraction leaked | Leakage time scale, years |
|---------------------------------------|---------------------------------------|-----------------|---------------------------|
| Rapid ("afforestation/reforestation") | 300 (37.5%)                           | 20, 50 and 100% | 300                       |
| Median ("biochar")                    | 200 (25%)                             | 20, 50 and 100% | 1000                      |
| Slow ("geological storage")           | 300 (37.5%)                           | 20, 50 and 100% | 10000                     |



delay of a few hundred years

### A mix of different leakage time scales (cont'd)



CO<sub>2</sub> reaching atmosphere is delayed considerably

Even with 100% leakage, the peak is reduced by 75%

Small effect on atmospheric stock with 20-50% leakage

## Costs and financing

# CO<sub>2</sub> BUDGET SOON EXHAUSTED! WHO SHOULD PAY FOR FUTURE NEGATIVE EMISSIONS?

#### THE EMITTERS!

- Future emissions need to be removed from the atmosphere
- Reasonable that the emitters pays
- Cost of 0.100 €/kg (100 €/tonne) is reasonable
- Global carbon intensity is 0.5 €/kg, so "cost" is 5% of global economy
- But, most emitters would find ways to reduce/avoid emissions much cheaper than 0.1 €/kg
- Thus, the actual cost for global economy of staying within the budget is only a few
- It could be less than one year of growth in economy
- But it would likely not affect the GDP, just a change of how we are using or money.

### **Conclusions**

#### DELAYING RELEASE IS AN EFFICIENT WAY REDUCE CLIMATE IMPACT

- Even if <u>all</u> of the stored carbon would leak, storage would give a very significant reduction of the atmospheric CO<sub>2</sub> stock.
- A leakage time scale of a few hundred years is sufficient to give a significant reduction
- ... and it significantly delays the peak.
- With increasing leakage time scale, the reduction becomes more and more significant.

- Conclusion above is valid for storing very large amounts,
  - e.g. 800 Gt, or 20 years of todays emissions
- It is not valid for storing *extreme amounts*, not even assuming very long leakage time scales
  - e.g 24 000 Gt, or 600 years of todays emissions

### **Conclusions 2**

# A MIX OF DIFFERENT LEAKAGE TIME SCALES, IN COMBINATION WITH A SIGNIFICANT SHARE OF PERMANENT STORAGE, WILL ONLY GIVE A SMALL IMPACT ON ATMOSPHERIC CO<sub>2</sub> STOCK

Thus, the mixed case with leakage time scales 300, 1000 and 10 000 years gives

- 88% reduction with 50% leakage, or 7 ppm
- 95% reduction with 20% leakage, or 3 ppm
- in addition the contribution to the stock is delayed a few hundred years
- the contribution to the stock will be much smaller than the natural fall in stock, assuming no net future emissions

#### NEGATIVE EMISSIONS IS A VERY EFFICIENT WAY TO REDUCE CLIMATE IMPACT

THE SMALL CONTRIBUTION COULD BE NEUTRALIZED BY INCREASING THE AMOUNT CAPTURED BY E.G. 5-10%





next conference May 2020

INTERNATIONAL CONFERENCE ON

# NEGATIVE CO<sub>2</sub> EMISSIONS

MAY 22-24, 2018

275 participants
11 keynotes
145 orals/papers
30 posters



Negative CO<sub>2</sub>
Negative CO<sub>2</sub> Emissions with Chemical-

Looping Combustion of Biomass

www.negativeCO2emissions2018.com

## Thank you!

