

Chemical-Looping Combustion (CLC) of Solid Fuels (SF-CLC) A Discussion of Operational Experiences, Costs, Upscaling Strategies and Negative Emissions (Bio-CLC)

N₂ (O₂) CO₂ H₂O

Air

Fuel

reactor

MeO_{1-x}

Air

Fuel

Anders LYNGFELT, Tobias MATTISSON, Carl LINDERHOLM and Magnus RYDÉN

Chalmers University of Technology, Sweden

GHGT14 October 21-25, 2018 Melbourne

Table 1: Overview hours of chemical-looping operation with different oxygen carrier materials.

Type	Oxygen carrier	Total 2018
Manufactured	NiO	3291
	CuO	1485
	Mn_3O_4	91
	Fe_2O_3	1454
	CoO	178
	Combined oxides	1102
NY . 1	Fe ore	965
Natural ore or waste material	Ilmenite	1240
	Mn ore	603
	CaSO4	75
Total manufactured		7601
Total natural/waste		2883
Total		10484
Publications		181

Table 1: Overview hours of chemical-looping operation with different oxygen carrier materials.

	edra
دم	eYeors
ast I	

Type	Oxygen carrier	2014-	
	NiO	491	13% 4
	CuO	858	23% 1
Manufactured	Mn_3O_4	0	0%
	Fe_2O_3	377	10%
	CoO	0	0%
	Combined oxides	557	15% 3
Natural ore or waste material	Fe ore	561	15% <mark>2</mark>
	Ilmenite	430	12% 6
	Mn ore	455	12% 5
	CaSO4	0	0%
Total manufactured		2283	61%
Total natural/waste		1446	39%
Total		3729	
P	Publications	66	

Table 12. Operation with of 39 CLC combustors , of which 21 solid fuel CLC

Location	Size	Hours of	Selected	First	
		operation	references	reported	
Chalmers	10 kW-GL	1650	[11] [12]	2004	
KIER	50 kW	31	[13]	2004	
CSIC	10 kW	120	[14]	2006	
Chalmers	0.3 kW-GL	1520	[15]	2006	
Chalmers	10 kW-SF	309	[16] [17]	2008	
CSIC	0.5 kW-GL	1586	[18]	2009	
KAIST	1 kW	8	[19]	2009	
Vienna UT	140 kW	649	[20]	2009	
Alstom, Fr	15 kW	100	[21]	2009	
Nanjing	10 kW –SF	260	[22]	2009	
KIER	50 kW	300	[23]	2010	
Nanjing	1 kW – SF	195	[24] [25]	2010	
IFP-Lyon	10 kW-GSF	578	[26] [27]	2010	
Stuttgart	10 kW	1	[28]	2010	
Xi'an Jiaotong	10 kW- Pr	15	[29]	2010	
CSIC	1.5 kW-SF	594	[30]	2011 2012	
Chalmers	100 kW – SF	199	[31] [32]		
Hamburg	25 kW –SF	65	[33]	2012	
Ohio	25 kW –SF		[34] [35]	2012	
Nanjing	50 kW-Pr	19	[36]	2012	
WKentuU	10 kW	24	[37]	2012	
Tsinghua	0.2 kW	350	[38]	2013	
Alstom, US	3 MW –SF	75	[39]	2014	
CSIC	50 kW-SF	54	[40]	2014	
Darmstadt	1 MW –GSF	195	[41] [42]	2015	
Huazhong	5 kW-GSF	200 62	[43]	2015 2015	
Guangzhou	10 kW-G	62	[44]	2015	
Nanjing	25 kW-G	13	[45]	2015	
KIER	200 kW	100	[46]	2016	
Huazhong	50 kW-SF		[47]	2016	
Sintef	150 kW	8	[48]	2016	
VTT	20 kW-SF	79	[49]	2016	
NETL	50 kW	2	[50]	2016	
Chalmers	1.4/10 MW	62	[51]	2016	
Nanjing	20 kW-SF		[52]	2016	
Zabrze	10 kW		[53]	2017	
Vienna UT	80 kW-SF	20	[54]		
Tsinghua	30 kW-SF	100	[55]	2018 2018	
CSIRO	10 kW-SF	35	[56]	2018	

Figure 4. Publications on chemical-looping (Scopus) and CLC operation vs year published.

Figures 5. Number of chemical-looping combustors versus year

Figure 6. Size of chemical-looping combustors versus consecutive number.

Increased challenges with

- Larger units
- Solid fuels
- ♪ Oxygen carriers with more complex composition
 - natural ores
 - ♪ combined oxides

Figure 7. Operation versus location.

Conclusion 1

CLC with solid fuels well proven in small pilot scale

No reason why it should't work in larger scale

But scale-up is large barrier

Conclusion 2

We need negative emissions

CLC with biomass is of great interest

Ways to scale-up

big cost

•Added cost relative to CFB¹

Type of cost	estimation, €/tonne CØ2	range, €/tonne CO ₂	Efficiency penalty, %	
CO ₂ compression	10	10	3	
Oxy-polishing	6.5	6.5 4-9		
Boiler cost	1	0.1-2.3	-	
Oxygen carrier	2	1.3-4	-	
Steam and hot CO ₂ fluidization	0.8	0.8	0.8	
Fuel grinding	0.2	0.2	0.1	
Lower air ratio	-0.5	-0.5	-0.5	
<u>Total</u>	<u>20</u>	15.9-25.8	3.9	
small cost				

Demonstration without CO₂ capture can significantly reduce costs.

- 1) Verify concept, and potential advantages wrt. alkali and NO_x
- 2) Add CO₂ capture

Conclusions 3

CLC boiler very similar to CFB boiler (=circulating fludized-bed boiler)

Highly concentrated CO₂ stream can be obtained at small added cost

Major cost likely downstream

CLC can be demonstrated at lower cost w/o capture

Pilot operational results with crushed biomass pellets

Unit	Oxygen carrier	Fuel	Fuel power (kW _{th})	Carbon capture rate (%)	Oxygen demand (%)	Fuel reactor temperature (°C)	Time of operation with fuel (h)
VTT 50 kW	Ilmenite (Titania A/S)	wwp, bwp	9 – 22	83 – 96	29 – 41	840 – 863	16
VTT 50 kW	Mn ore ("Sibelco Braunite")	wwp, bwp, wc	22 – 60	72 – 96	11 – 31	838 – 897	23
Chalmers 100 kW	Mn ore ("Sibelco Calcined")	wwp, bwp	29 – 67	99	25	940 – 975	7
SINTEF 150 kW	Ilmenite (Titania A/S)	bwp	140	94 – 97	23 – 28	960 – 980	10
Chalmers Research Boiler	Mn ore ("Sibelco Calcined")	wwp	2400	NA	≈ 40	810 – 830	500

Biomass in CLC

High volatiles content could give problems with gas conversion

Could low ash content make manufactured oxygen carriers possible?

Biomass difficult fuel alkali gives low ash-melting temperature

Could CLC facilitate the use of biomass in boilers? (positive experience with OCAC)

Could range of possible fuels be extended?

Multipurpose Dual Fluidized Bed

Three cases with heat extraction only

CO₂ to NO_x-removal Compression, CO₂ for stack NO_x-removal storage Water Condensation Water Condensation Ash **Filter** Ash **Filter** (alkali) (alkali) Air Air Completion Completion Oxygen Flue gas $N_2(O_2)$ combustion $N_2(O_2)$ combustion Sand MeO MeO Fuel Air Air Fuel Air Fuel reactor reactor reactor reactor reactor reactor MeO_{1-x} **Air and Biomass Biomass** Air Air **Biomass** 4A MDFB-boiler-4B Chemical looping to reduce NO_x 4C Chemical looping for negative and alkali problems normal combustion emissions

Two cases where heat extraction is minimized, in order to get high fuel output

4D Chemical Looping Gasification – for Fuel Production and Negative Emissions.

4E Thermal gasification - fuel production only

Thank you!

