Chemical-looping combustion

A cost breakthrough technology?

Anders Lyngfelt

Prepared for GHGT-13 Panel Discussion: Will advanced technologies significantly reduce the cost of Capture
November 16, 2016, Lausanne

Why chemical-looping combustion (CLC)?

removed by condensation

Oxygen is transferred from air to fuel by metal oxide particles

Inherent CO₂ capture:

- fuel and combustion air never mixed
- no active gas separation needed
- large costs/energy penalties of gas separation avoided

Potential for real breakthrough in costs of CO₂ capture

Other costs

- CO₂ compression
 - Similar to other capture technologies
- Oxygen production (incomplete conversion)
 - 5-10 times less oxygen needed compared to oxyfuel
- CO₂ purification
 - As in oxyfuel, option for SO_2/NO_x capture
- Oxygen carrier
 - With low cost ores, estimated to 1-4 €tonne CO₂
- Total costs, estimated to 16-26

 tonne CO₂

But does it work?

- CLC operation worldwide
 - 34 pilots: 0.3 kW 3 MW
 - >9000 h operation: of which solid fuels >3000 h

CLC with <u>solid</u> fuels

- Low cost oxygen carriers can be used
- Incomplete conversion/capture
 - Some oxy-polishing needed, estimate: 10-20%
 - Up to 98% CO₂ capture attained

Conclusions

- Low additional cost relative to CFB
- Major costs downstream
 - CO2 compression
 - Oxygen production
 - CO₂ purification
- Pilot operation shows process works

THANK YOU! QUESTIONS?

