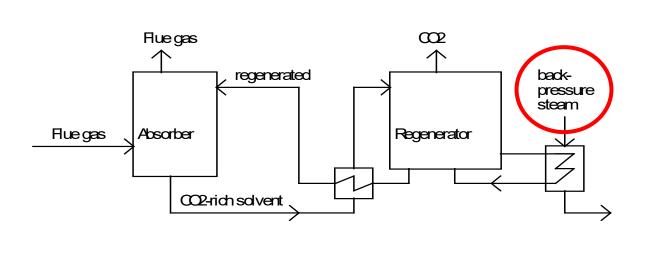
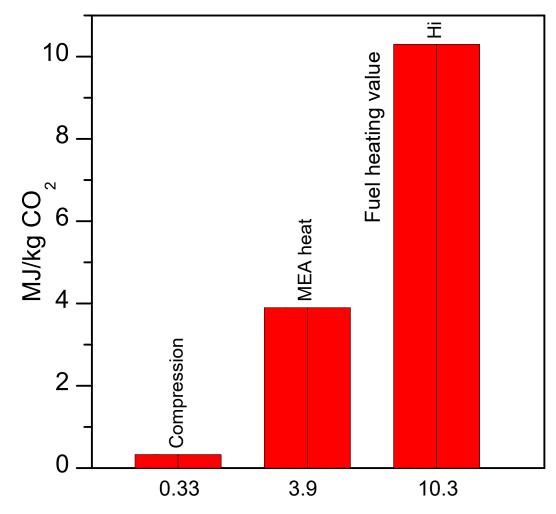
The oxygen carrier

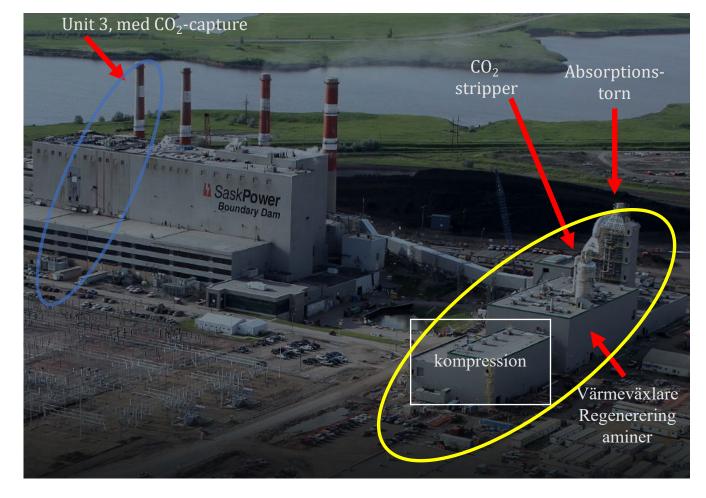
_

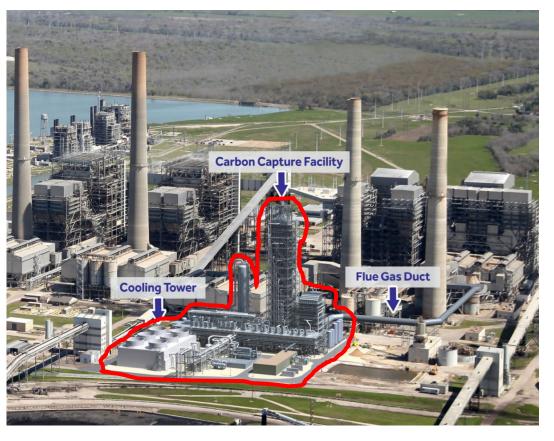
the key to unlock CO_2 capture at low cost and low energy penalty


Anders Lyngfelt Chalmers



Decarbonization Workshop Stockholm March 21, 2024


Absorption of CO₂ med monoethanolamine (MEA)



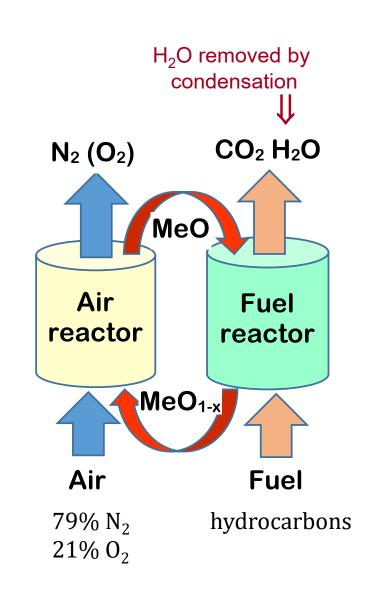
Status CCS

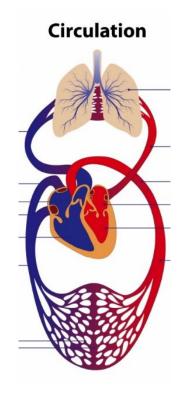
Boundary Dam, Unit 3, 110 MW, 1 MtCO₂/year, start 2014

Petra Nova, 1.4 Mt/year, start 2017

Shut down 2020

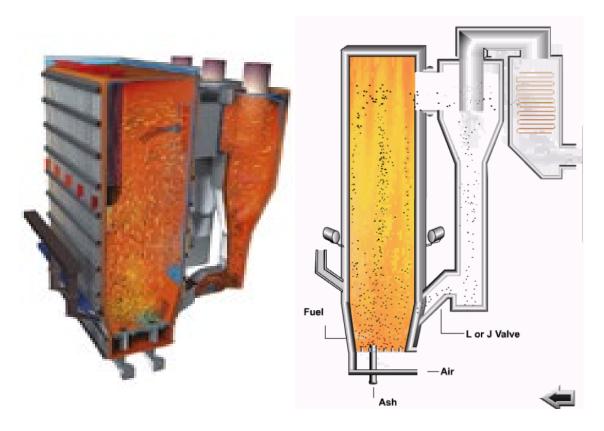
Capture: 0.62 Mt/year first 6.5 years

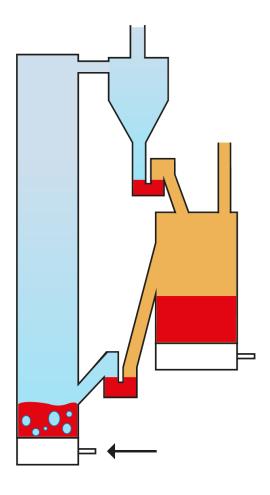

Chemical-Looping Combustion (CLC)


Oxygen is transferred from air to fuel by *metal oxide particles:* **the oxygen carrier**

Inherent CO₂ capture:

- fuel and combustion air never mixed
- no active gas separation needed


Unique potential for reducing costs of CO₂ capture!



High similarity between Chemical Looping Combustion and Circulating Fluidized-Bed (CFB) boilers

Circulating fluidized-bed boiler (commonly used for solid fuels)

Chemical Looping Combustion

But, does it work in practice?


Yes, it works!!

Total chemical-looping operation at Chalmers: 4 200 h in four pilots

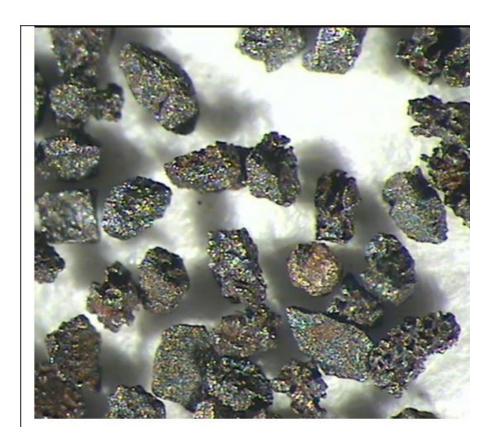
Worldwide: >12 000 h in >50 pilots

300 W gas, 2004

10 kW solid fuel, 2006

10 kW gas, 2003 300 W ga

100 kW solid fuel, 2011


The <u>oxygen carrier</u> is the blood of CLC

Metal oxide particles of size 0.1-0.3 mm.

Operational temperature in CLC is typically 850 – 1100°C

Needed properties:

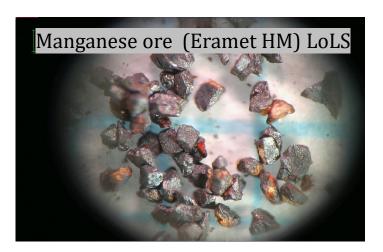
- Adequate reactivity
- Adequate thermodynamic properties
 - Reduced form must be able to oxidize in \approx 4% O2
 - Oxidized form must be able to oxidize fuel (≈100%)
- Particle integrity
 - Resistant to formation of fines
 - Low risk of agglomeration
 - Maintain reactivity
 - Low risk w.r.t. HSE (Health & Safety & Environment)
 - Interaction (negative/positive) with ash and other contaminants (fuel-N, fuel-S) in case of solid fuels
- Reasonable cost

Manganese ore particles used in CLC. Size fraction 0.18-0.21 mm

Examples of systems (oxidized↔reduced):

- $Fe_2O_3 \leftrightarrow Fe_3O_4$; $Mn_3O_4 \leftrightarrow MnO$; $CuO \leftrightarrow Cu_2O/Cu$; $NiO \leftrightarrow Ni$
- $Fe_2TiO_5+TiO_2 \leftrightarrow FeTiO_3$; $(Mn,Fe)_2O_3 \leftrightarrow (Mn,Fe)_3O_4$; $Mn_7SiO_{12}+SiO_2 \leftrightarrow MnSiO_3$; $Mg_2MnO_4 \leftrightarrow MgMn_2O_4+MgO_4$

Classes of oxygen carriers


Manufactured monometallic oxygen carriers

Iron oxide

Manganese oxide

Copper oxide*

Natural ores and waste materials

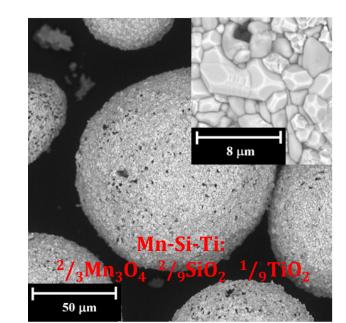
Ilmenite (FeTiO₃)

Manganese ore

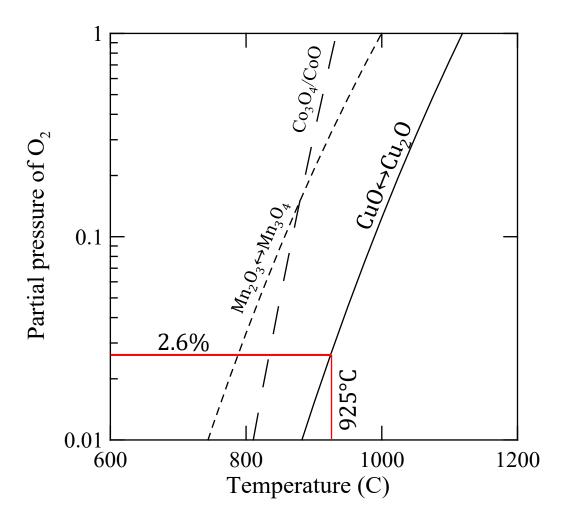
Iron ore

Fe-containing waste mtrls: Red mud, LD-slag, scales

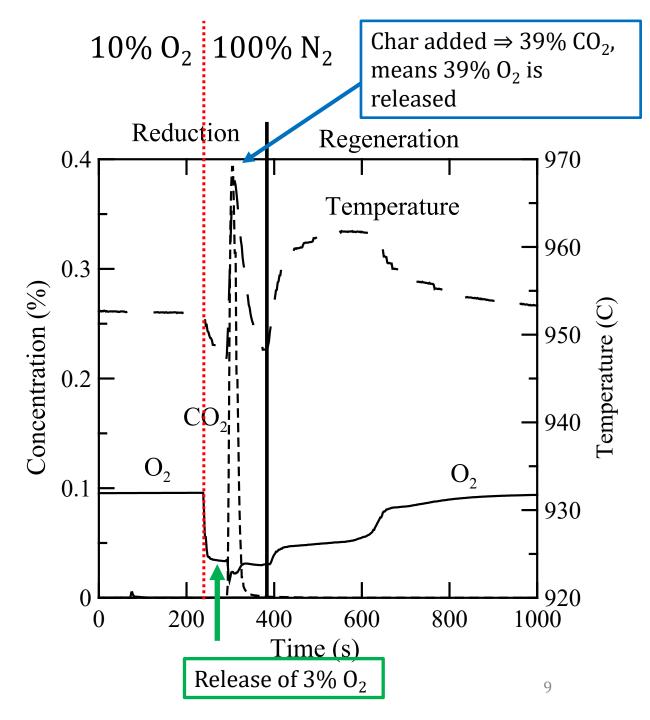
*CLOU materials (releases gas-phase oxygen)

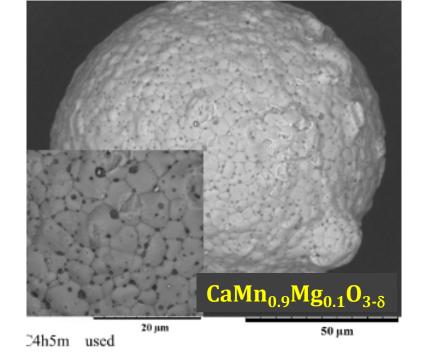

Manufactured combined oxides

Bimetallic combined Mn-materials* $CaMn_{1-X}Mx_xO_{3-\delta}$ (Mx=Ti,Fe,Mg...) Mn-Fe Mn-Mg

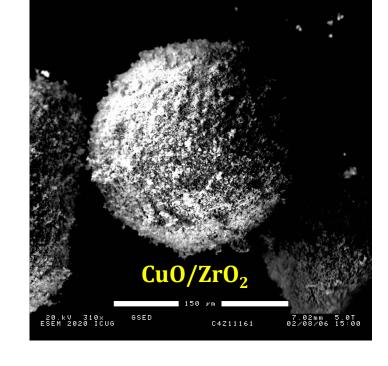

Mn-Si

. . .

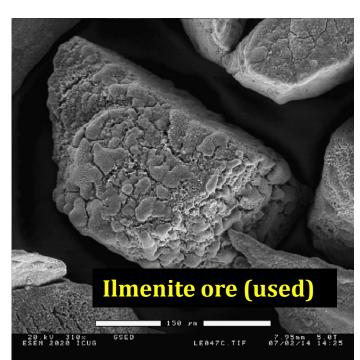

Ternary Mn-materials*
Mn-Si-Ti, Mn-Ca-Mg, Mn-Ca-Si, Mn-Ca-Fe,
Mn-Fe-Mg, Mn-Fe-Si, Mn-Si-Mg

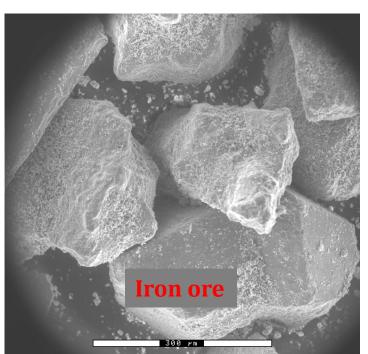


CLOU (Chemical-Looping with Oxygen Uncoupling)




CuO↔Cu₂O equilibrium O₂ at 925°C 2.6%





The <u>oxygen carrier</u> is the blood of CLC

Metal oxide particles of size 0.1-0.3 mm.

Operational temperature in CLC is typically 850 – 1100°C

Manganese, iron, copper, nickel and *combined* oxides* have been successfully used in chemical-looping pilot operation.

Low-cost natural ores, e.g. ilmenite, manganese and iron ores well suited for solid fuels also successfully used in operation.

Highly performing manufactured materials are suitable for ashfree gaseous fuels,

e.g. calcium manganate (CaMnO₃)

- Full gas conversion
- Long lifetime
- From low cost raw materials

Chalmers' research in CLC

- >500 oxygen carriers tested in the lab
- >70 oxygen carriers in pilot operation (>4200 h)

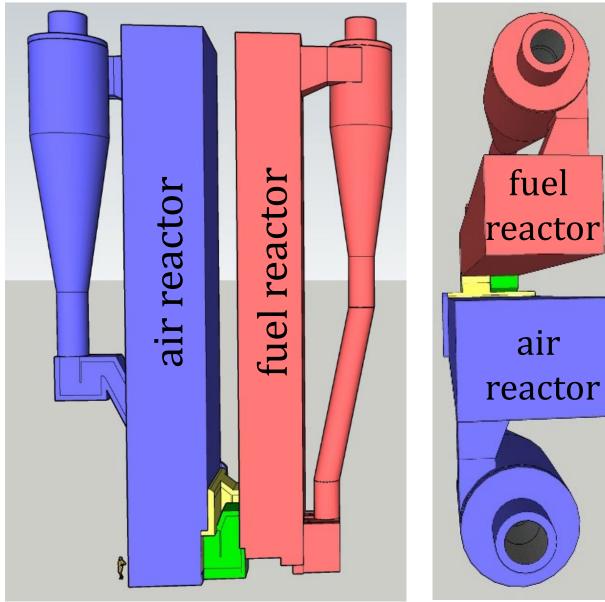
Operation world-wide in 49 pilots 222 publications, ½ solid fuels

Туре	Oxygen carrier	Time of operation	Percent
Manufactured	NiO	3291	28%
	CuO	1455	12%
	Mn_3O_4	91	1%
	Fe_2O_3	1842	16%
	CoO	178	2%
	Combined	1480	13%
Natural ore or	Fe ore	1075	9%
	Ilmenite	1524	13%
waste material	Mn ore	735	6%
	CaSO ₄	75	1%
Total manufactured		8337	71%
Total natural/waste		3409	29%
Total		11746	100%

Potential applications of CLC technology

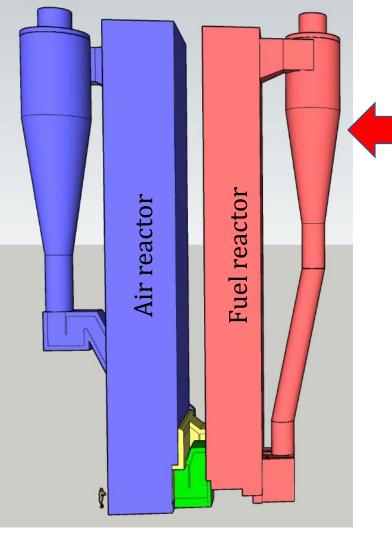
- Coal combustion
- Biomass/waste combustion (negative emissions)
- Steam-Methane Reforming with Chemical-Looping Combustion (SMR-CLC)

Chemical-looping combustion of coal


- high similarity to normal circulating fluidized bed combustion
- small added cost, low energy penalty
- pollutants concentrated in CO₂ could reduce costs of SO_x/NO_x reduction
- unique potential for dramatic reduction in CO₂ capture cost
- large potential market

Chemical-looping combustion of biomass

- Same advantages as with coal
- important advantage with respect to alkalis
- negative emissions, future need for meeting exceeded carbon budgets


200 MW combined CLC-CFB boiler, 40 m high

Air reactor can also be used as CFB boiler

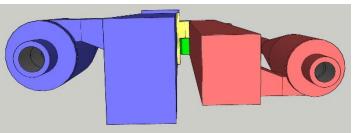
Circulation based on collecting downfall along riser walls of air reactor

Lyngfelt, A., Pallarés, D., Linderholm, C., Lind, F., Thunman, H., and Leckner, B., Achieving Adequate Circulation in Chemical-Looping Combustion – Design Proposal for a 200 MW_{th} CLC Boiler, *Energy & Fuels* 36:17 (2022) 9588–9615

200 MW CLC-CFB, added cost of Fuel Reactor:

1500 m² insulated wall at 2000 €/m²

⇒ 1500 x 3000 = 3 M€


10% depreciation

⇒ 0.3 M€/year

capture: 0.4 MtCO₂/year

cost of fuel reactor : $\frac{0.3 \, M \in /year}{0.4 \, MtCO_2/year} = 0.75 €/t CO_2$

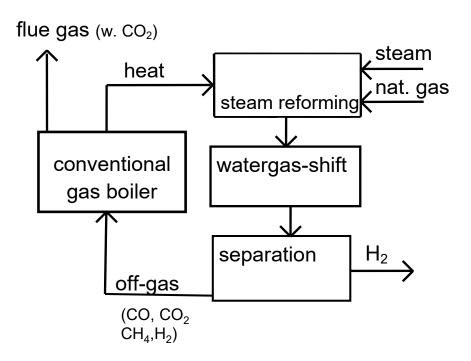
Cost of post-combustion CO₂ capture: 100 €/t CO₂

Costs, CLC of solid fuels, estimated at 16-26 €/tCO₂

	big cost		
Type of cost	estimation, €/tonne CØ2	range, €/tonne CO ₂	Efficiency penalty, %
CO ₂ compression	10	10	3
Oxy-polishing	6.5	4-9	0.5
Boiler cost	1	0.1-2.3	-
Oxygen carrier	2	1.3-4	-
Steam and hot CO ₂ fluidization	0.8	0.8	0.8
Fuel grinding	0.2	0.2	0.1
Lower air ratio	-0.5	-0.5	-0.5
<u>Total</u>	<u>20</u>	<u> 15.9-25.8</u>	3.9
	> small cost		

Blue hydrogen (="CO₂-free" hydrogen)

can be produced at low cost by combining


Steam Methane Reforming (SMR) with

Chemical-Looping Combustion (CLC)

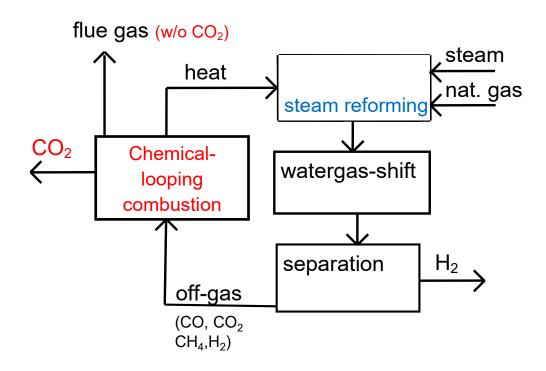
Natural gas is typically 90-95% methane

Steam Methane Reforming (SMR)
of natural gas
is the most common way of producing
hydrogen,
but involves large emissions of CO₂

Normal steam methane reforming (SMR)

Reforming:

 CH_4 (methane) + H_2O + $\frac{\text{heat}}{\text{Mater gas shift:}}$ \Rightarrow CO_2 + CO + H_2O + H_2


$$CO + H_2O \Rightarrow CO_2 + H_2$$

Separation:

H₂(hydrogen) is removed from the gas mixture <u>Combustion:</u>

Remaining gas + extra methane => <u>heat</u>

Steam reforming with CLC

Carbon dioxide in a separate flow w/o separation

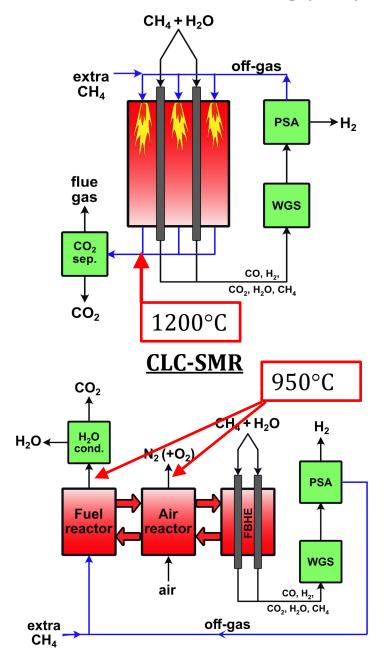
⇒ Natural gas converted to carbon-free fuel: i.e. hydrogen

Heat is transferred in a fluidized-bed heat exchanger (FBHE)

Summary: Why CLC-SMR?

Capture of CO₂ with no/small energy penalty

Negative energy penalty for process¹ (T outlet reduced from 1200 to 950°C)


Capture of CO₂ with without high equipment/operational/energy cost for gas separation

More efficient heat transfer and more benign conditions

- smaller tube diameter possible in FBHEs (fluidized-bed heat exchangers)
- thus, shorter and thinner tubes (length decrease by factor 3?)²
- thus, less catalyst (amount decreased by factor of 3?)²
- thus, lower cost of reforming step

In total: Potential for transforming natural gas to CO_2 -free H_2 with <u>negative</u> energy penalty and <u>negative</u> cost penalty for CO_2 capture. Gigantic potential future market.

Steam Methane Reforming (SMR)

¹⁾ Stenberg V, Spallina V, Mattisson T, Rydén M. Techno-economic analysis of H₂ production processes using fluidized bed heat exchangers with steam reforming – Part 2: Chemical-looping combustion. *International Journal of Hydrogen Energy* **46** (2021) 25355-25375

²⁾ Pröll, T., and Lyngfelt, A., Steam Methane Reforming with Chemical-Looping Combustion – Scaling of Fluidized Bed-Heated Reformer Tubes, *Energy & Fuels* 36:17 (2022) 9502–9512

Chemical Looping combustion (CLC)

CLC boiler very similar to CFB boiler (=circulating fludized-bed boiler)

Highly concentrated CO₂ stream can be obtained at small added cost

Cost: 25-50% of competing technologies for solid fuels

- Eliminate/reduce emissions of SO₂ (coal)
- Eliminate/reduce emissions of NO_x (coal & biomass)
- Eliminate/reduce problems with alkali ash components (biomass)

Steam Methane Reforming with CLC

■ Potential for lower cost than conventional SMR without CO₂ capture, i.e. *negative* capture cost

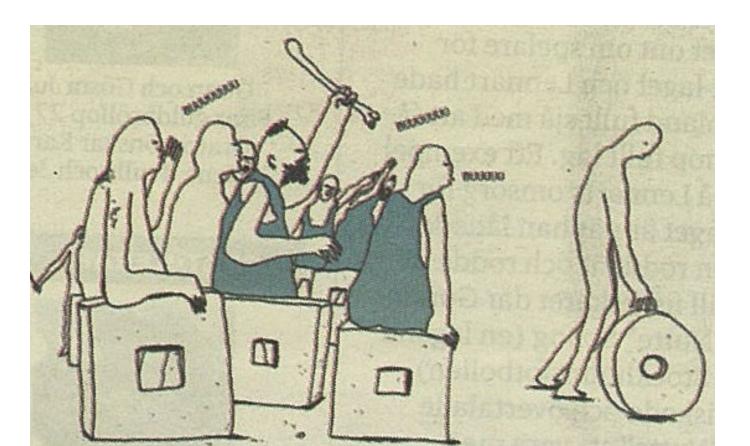
Oxygen carriers

Many different materials have been successfully used in pilot operation

Natural ores relevant for solid fuels

Manufactured CLOU materials could make sense for gas fuels, e.g. SMR-CLC

My favourites:


Ilmenite and manganese ore, possibly in combination, for solid fuels

Calcium manganate for gas fuels (SMR-CLC)

Thank you!

