Pollutant formation and mitigation in combustion, Anders Lyngfelt

Overview
Sulphur
Nitrogen oxides
Incomplete combustion

CO₂ capture and storage in separate presentation

COMBUSTION

component	emission	<u>impact</u>	measure
CH _x	CO ₂ (not biofuel)	climate	<u>C</u> PF
"	volatile organic hydrocarbons etc	health, sec.air pollutants (SEP)*	<u>C</u> P
"	soot, low volatile polycyclic aromatic hydrocarbons (PAH)	health	<u>C</u> P
N in air	NO _× (thermal)	health, "SEP"	<u>C</u> P
N in fuel	NO _x (fuel-) N ₂ O	acid rain, eutrophication climate, str.ozon	<u>C</u> P

^{*}SEP, e.g. tropospheric ozone

measures:

combustion, P post combustion, F change/clean fuel

COMBUSTION (CONTINUED)

<u>component</u>	emission	<u>impact</u>	measure
5	SO ₂ , -> SO ₃	acid rain, environment, (health)	<u>C</u> PF
heavy metals	heavy metals	health, environm	P
Нд	Hg (=mercury)	health, environm	P
Cl (chlorine)	dioxins	health, environm	<u>c</u> P F
mineral ash	solid waste	place, leaching	(F)

measures:

combustion, P post combustion, F change/clean fuel

sulphur capture in fluidized beds

by addition of limestone

$$CaCO_3 \rightarrow CaO + CO_2$$

$$CaO + SO_2 + \frac{1}{2}O_2 -> CaSO_4$$

Thermal NOx, Zeldovich mechanism:

$$N_2 + O \iff NO + N$$

$$N + O_2 <=> NO + O$$

Liquid fuel \longrightarrow release of nitrogen \longrightarrow N_2 , NO compounds

volatiles, including \longrightarrow N_2 , NO NH₃ and HCN

Solid fuel particle char, including \longrightarrow N_2 , NO fuel bound nitrogen

2. Fuel NOx

Figure 10.3.
Trade-off between unburned nitrogen compounds and nitrogen oxide

3. Prompt NOx

N2O formation/reduction

Reburning

Figure 10.4. Air staging in bed and suspension combustion

Figure 10.5. Reburning in a utility boiler

Figure 10.6.

Table 10.1. NO_x reduction measures and their potential (van der Lans et al.)

Control Method	NO _x reduction Potential*	Investigation and Baseline
low excess air level	0-15%	(Guidelines for retrofit; study sponsored by EPRI) ¹³⁷
	10-15%	Lowering from 6 to 4% O ₂ in several industrial installations with brown coal. Baselines from 200-350 ppm. 138
over fire air	15-30%	(Review) ¹³⁹
	25%	Baseline 220 ppm in a 300 MW _e boiler with brown coai. 138
	20%	Baseline about 500 ppm in a tangentially fired furnace. 140
	15%	Baseline about 300 ppm in a 600 MW _{th} opposed-fired boiler. ¹⁴¹
	15-50%	Typically 15% for wall-fired and 25% for tangentially fired. 137
low NO _x burners	23-40%	Two tangentially fired and two front wall- fired boilers. 40% reduction from baselines of 500-650 ppm, 23% reduction for 350 ppm

tangentially fired. 137

		3 ,
low NO _x burners	23-40%	Two tangentially fired and two front wall-fired boilers. 40% reduction from baselines of 500-650 ppm, 23% reduction for 350 ppm as baseline. ¹⁴²
	50%	500 and 250 MW _{th} wall-fired, baseline about 900 and 600 ppm respectively. ¹⁴³
	55%	600 MW _e opposed-fired, baseline about 800 ppm. ¹⁴⁴
	40-70%	(Guidelines for retrofit; study sponsored by EPRI) ¹³⁷
flue gas recirculation	up to 30%	For wet bottom boilers; only few percent for dry bottom boilers (hard coal). 139
	9-13%	150, 300 and 600 MW _e boiler with brown coal. Baselines about 120 ppm, 10% recirculation. 138
reburning	50%	300 MW _e opposed-fired, baseline about 600 ppm. 145
	60-70%	71 MW _e tangentially fired (baseline about 550 ppm) and 158 MW _e wall-fired (baseline about 400 ppm). ¹⁴⁶
SNCR	30-80%	(Review) ¹³⁹
SCR	60-90%	Most installations have been designed for a reduction around 60-70%, but over 90% can be reached at high initial NO concentration. ¹³⁹

^{*}Compared to baseline value

Figure 10.7.
Emissions from a CFB boiler operated at 870° C and a total excess air ratio of 1.2. From Lyngfelt et al.

Figure 10.8. Distribution of trace elements during coal combustion. Davidson, 2000