Chemical-Looping Combustion

_

Avoiding the Large Energy and Cost Penalty of BECCS

Anders Lyngfelt

2nd International Conference on Negative CO₂ Emissions June 14-17, 2022 Göteborg, Sweden

Existing CO₂ capture technologies have large costs/energy penalties of **gas separation**

But this can be avoided with *Chemical-Looping Combustion (CLC)!*

- Oxygen is transferred from air to fuel by metal oxide particles
- Inherent CO₂ capture:
 - fuel and combustion air never mixed
 - no active gas separation needed

But does it work in practice ??

Yes, it works!!

Total chemical-looping operation at Chalmers: 4 200 h in four pilots

10 kW solid fuel, 2006

Worldwide: 12 000 h in 50 pilots

100 kW solid fuel, 2011

300 W gas, 2004 10 kW gas, 2003

What is a fluidized bed?

In small biomass boilers grate firing is used.

For larger boilers fluidized bed is common

If gas (air) is blown through a bed av particles (e.g. sand) you get a fluidized bed.

Behaves like a liquid

Circulating fluidized-bed boiler for burning biomass

Chemical Looping Combustion

Conventional biomass combustion is similar to Chemical-looping Combustion: >>>Low added cost for CLC

Actual circulation in CFB boilers is 5-50% of what is needed for CLC

But the upwards flow decreases exponentially, and there is a corresponding downflow along the walls.

Thus, collection of down-flow along the walls, would be sufficient.

Lyngfelt, A., Pallarés, D., Linderholm, C., Lind, F., Thunman, H., and Leckner, B., Achieving Adequate Circulation in Chemical-Looping Combustion – Design Proposal for a 200 MW_{th} CLC Boiler, *Energy & Fuels (in press) 2022*

200 MW CLC-CFB boiler, 40 m high

fuel reactor

air reactor

air reactor

fuel reactor

air reactor

fuel reactor

Alkali in biomass gives low ash-melting temperature together with silica (i.e. sand).

With ilmenite oxygen carrier (FeTiO₃) the alkali forms non-sticky titanates.

>20,000 h of OCAC (oxygen-carrier aided combustion) in 75 MW CFB with ilmenite

Could range of possible fuels be extended?

Similarly, NO in concentrated flow Options for eliminated/reduced NO?

Equilibrium NO concentration in a fuel reactor is well below 1 ppm.

Data from pilot operation with biomass, indicate NO concentrations of the order of 100 ppm.

However, more detailed studies of the fate of added NO or NH₃ in an inert/fuel gas stream to a bed of ilmenite oxygen carrier shows:

With fully oxidized oxygen carrier:

NO is not reduced Some NH₃ is oxidized to NO

In presence of fuel, NO is completely reduced to N_2 No NH_3 is oxidized to NO

The same also applies in absence of fuel, if the oxygen carrier is slightly reduced.

=>There is good reason to assume that in a high riser, any NO formed would be reduced.

REF: Fate of NO and Ammonia in Chemical-Looping Combustion – Investigation in a 300 W CLC Reactor System, Lyngfelt, Hedayati and Augustsson, accepted for publication in Energy & Fuels

OCAC operation Chalmers 12 MW CFB

Table 1. Required purity of CO₂.62,63

Component	ppm
Water, H₂O	≤30
Oxygen, O ₂	≤10
Sulphur oxides, SO _x	≤10
Nitric oxides/nitrogen dioxide, NO _x	≤10
Hydrogen sulphide, H₂S	≤9
Carbon monoxide, CO	≤100
Amine	≤10
Ammonia, NH₃	≤10
Hydrogen, H ₂	≤50
Formaldehyde	≤20
Acetaldehyde	≤20
Mercury	≤0.03

Options for purification

Cryogenic distillation of CO₂ - to remove O₂, NO, CO, N₂ etc.

Catalytic combustion of O_2 at 80°C with H_2 - NO?

Catalytic combustion of O_2 at 450° C with CH_4 - NO?

NO – oxidation to NO₂ with ClO₂

NO₂ and SO₂ removal can be done in connection with compression and condensate removal

1500 m² insulated wall at 2000 €/m²

>>> 3 M€

or

0.3 M€/year

capture: 0.4 Mt CO₂/year

cost of fuel reactor : 0.75 €/t CO₂

•	_
bia	cost

Type of cost	estimatio €/tonne Ç	7	Efficiency penalty, %
CO ₂ compression	10	10	3
Oxy-polishing	6.5	4-9	0.5
Boiler cost	1	0.1-2.3	-
Oxygen carrier	2	1.3-4	-
Steam and hot CO ₂ fluidization	0.8	0.8	0.8
Fuel grinding	0.2	0.2	0.1
Lower air ratio	-0.5	-0.5	-0.5
<u>Total</u>	<u>20</u>	<u> 15.9-25.8</u>	3.9
	> small cost		

¹Lyngfelt, A., and Leckner, B., A 1000 MW_{th} Boiler for Chemical-Looping Combustion of Solid Fuels - Discussion of Design and Costs, *Applied Energy* 157 (2015) 475-487

Chemical Looping combustion (CLC)

CLC boiler very similar to CFB boiler (=circulating fludized-bed boiler)

Highly concentrated CO₂ stream can be obtained at small added cost

Cost: 25-50% of competing technologies

Works with biomass

Eliminate/reduce emissions of NO_x

Eliminate/reduce problems with alkali ash components

Presently no market – poor interest from industry to engage in development

Thank you!

