"CHEMICAL-LOOPING COMBUSTION (CLC) Status of development

Anders Lyngfelt, Chalmers University of Technology, Göteborg

9th International Conference on Circulating Fluidized Beds, 2008

Content

- what is chemical-looping combustion (CLC)?
- operational experience
- what are oxygen carriers?
- chemical-looping reforming
- chemical-looping for solid fuels
- chemical-looping with oxygen uncoupling (CLOU)
- additional concepts
- conclusions

WHY CLC?

CO₂ capture using post-, oxy- or pre-combustion:

- cost of gas separation
- energy loss power plant, 9-10% units

In Chemical-Looping Combustion (CLC) <u>oxygen is</u> <u>transferred from air to fuel using an oxygen</u> <u>carrier</u> (metal oxide particles)

CLC ("unmixed combustion") by-passes the gasseparation problem by <u>never mixing air and fuel</u>, => gas <u>separation</u> is <u>not needed</u> to capture CO₂

CLC reactor system

1 air reactor, 2 cyclone

3 fuel reactor, 4 particle locks

Lyngfelt C Hamburg 2008

Circulating fluidized bed boiler for solid fuels

Ex. Chalmers-boiler 10 MW,

(12 m high, 35 ton coal/day)

Commercial:

250 MWe

600 MWe (designed)

CLC is a new principle of fuel conversion

Energy production from fuels

respiration	~2 000 000 000 BC
fire	~500 000 B <i>C</i>
fuel cell	1839
chemical-looping combustion	2003

CLC, status 2002:

- only a limited number of laboratory tests with particles tested in few cycles
- "paper concept"; the process never tested in real operation

Chalmers' 10 kW chemical-looping combustor 2003

2003

>100 h operational experience in 10 kW CLC combustor showing

- <99.5% fuel conversion
- 100% CO2 separated
- minimal physical degradation, i.e. very small loss of fines (0.002%/h)
- no loss in particle reactivity
- stable operation

2008

>2800 h of operational experience in chemical looping combustors

- •>9 CLC units, 300 W 100 kW
- >24 different materials tested
- tested oxides include: NiO, CuO, Fe₂O₃, Mn₃O₄, CoO, CaSO₄, ilmenite (natural mineral, FeTiO₃)
- fuels: natural gas, CH₄, CO/H₂, bit. coal, petcoke
- one material tested for >1000 h

Chemical-looping combustors

Location	Unit	Oxides tested	Operation hours	Fuel	
Chalmers	10 kW	NiO, Fe_2O_3	1355	nat. gas	
KIER, S Korea	50 kW	NiO, CoO	28	nat. gas	
CSIC, Spain	10 kW	CuO, NiO	140	nat. gas	
Chalmers	300 W	NiO, Mn ₃ O ₄ , Fe ₂ O ₃ , ilmenite	559	nat. gas, syngas	
CSIC, Spain	500 W	CuO, NiO	660	nat. gas	
Chalmers	10 kW – solid fuel	ilmenite	50	coal, petcoke	
Daejong, S Korea,	1 kW	NiO + Fe ₂ O ₃	?	CH ₄	
Vienna, Techn. Univ.	100 kW	ilmenite, NiO	50	nat. gas, CO, H2	
Alstom					

>600 materials tested in laboratory under cycling conditions

- most testing with thermogravimetric analysis
- >200 materials also tested in laboratory batch fludized tests
- particle manufacture includes: impregnation, extrusion, freeze-granulation, spray-drying, spin-flash drying, precipitation ...
- Regeneration, i.e. reaction with O_2 normally very fast, and complete consumption of all O_2 not needed. Therefore focus on reaction with fuel.

Three different types of oxygen carriers based on Fe₂O₃

Iron ore

Impregnated Freeze granulated

BET= $3.7 \text{ m}^2/\text{g}$

Pore volume= $0.012 \text{ cm}^3/\text{g}$

BET= $80.8 \text{ m}^2/\text{g}$

Pore volume= $0.35 \text{ cm}^3/\text{g}$

BET= $8,3 \text{ m}^2/\text{g}$ (high)

Pore volume=0,33 cm³/g

Lyngfelt CFB-9 Hamburg 2008

Tested materials (in laboratory)

Manufactured particles:

- active oxides primarily NiO/Ni, CuO/Cu, Mn₃O₄/MnO, Fe₂O₃/Fe₃O₄
- support materials, e.g. Al₂O₃, TiO₂, SiO₂, ZrO₂, sepiolite, bentonite, Al₂MgO₄ ...
- various mixing ratios active oxide/support
- heat treatment: typically 900-1300 C

Natural ores (iron ore, manganese ore, ilmenite)

Industrial waste materials

Pros and cons for the active oxides

	Fe	Mn	Cu	Ni
Oxygen ratio, %	3	7	20	21
Reactivity (to CH ₄)		-	+	++
Cost	++	+	-	
Health				-
Thermodynamics				-1
Reaction with CH ₄			+2	
Melting point			_3	

¹maximum conversion 99-99.5%

²exothermic reaction in fuel reactor

³melting point Cu: 1085 C

Strong difference in reactivity with respect to methane, but not CO/H_2 Ni(+), Mn(*), Fe(*)

Lyngfelt CFB-9 Hamburg 2008

MIXED OXIDES

Ni

high reactivity vs CH₄ reforming catalyst: CH₄+H₂O => CO+3H₂ high cost / toxic Mn, Fe & related mtrls
high reactivity vs CO, H₂
moderate/low vs CH₄
low cost / low toxicity

(>0.01×cost of Ni-mtrl)

Ni-materials with high reforming capacity

+

low cost materials

high reactivity vs CH₄ in combination with small amount of Ni

Additional oxides being studied

- Ilmenite (FeTiO $_3$ /Fe $_2$ TiO $_5$ +TiO $_2$): cheap mineral, major drawback is moderate reactivity towards methane
- Cobalt oxide (CoO/Co): more expensive and less healthy than NiO, maximum conversion 95-97%
- Calcium sulphate (CaSO₄/CaS): maximum conversion of fuel 98-99%, SO_2 release ??, cheap
- Perovskites, (e.g. $La_xSr_{1-x}Fe_yCo_{1-y}O_{3-\delta}$) normally small transfer capacity, thermodynamics not clear

Chemical-Looping Reforming (CLR):

- autothermal reforming, CLR(a)
- steam reforming, CLR(s)

two processes to convert natural gas to hydrogen, with simultaneous capture of CO_2

Chemical-Looping autothermal Reforming, CLR(a)

- Partial oxidation (instead of full conversion of fuel, as in CLC).
- => syngas suitable for H₂
 production and CO₂
 capture.
- Works: >250 h with 4 different materials

Chemical-Looping steam Reforming

Conventional steam reforming, but heated by CLC in fluidized bed heat exchanger. Fuel is "off-gas" from the H₂ separation.

Higher reforming efficiency than conventional reforming (exlud. CO_2 compression)

- 1) air reactor/riser, 2) cyclone, 3) fuel reactor,
- 4) fluidized bed heat exchanger / reformer (Return flow from 4 to 1 not shown)

CLC for solid fuels

- Solid fuels react <u>indirectly</u> with ox.carrier, via gasification step
- Char may follow particles to air reactor => incomplete capture
- Gasification slow => long residence time => large solids inventory in fuel reactor
- Less effective contact between fuel gas and oxygen carrier
- Ash may reduce oxygen carrier life-time

Fundamental principles

Gasification

Char is gasified in environment of highly reducing gas, in order to achieve gas with high heating value.

=> low concentration of reacting gas (H_2O, CO_2) , high concentration of inhibitor (H_2, CO)

Chemical-looping combustion

Char is gasified in environment of <u>oxidizing gas</u> $(H_2O + CO_2)$, with rapid removal of gasification products (CO, H₂) already inside the particle phase => high concentration of reacting gas (H₂O, CO₂), low concentration of inhibitor (H_2, CO)

50 h operational experience

- gas: incomplete oxidation
- >>>> oxypolishing
- CO₂ from air reactor
- >>>> carbon stripper,
- >>>> increased residence time in fuel reactor
- char loss
- >>>> better cyclone
- cheap oxygen carrier, ilmenite, 100 €/ton

Loss efficiency power plant: >2-3% units

Cost:

>10 €/tonne CO₂

Lyngfelt CFB-9 Hamburg 2008

Chemical-Looping with Oxygen Uncoupling - CLOU

In the <u>air reactor</u> O_2 conc. can be lowered to appr. 2% In the <u>fuel reactor</u> the temperature increases due to exothermic reaction => partial pressure of O_2 increases. O_2 released is consumed by the fuel, leading to new release of O_2 .

E.g. petroleum coke can be completely converted in 20-30 s

Chemical-Looping with Oxygen Uncoupling with petroleum coke

Time needed to convert fuel vs. temperature

Additional concepts being studied

- One-step hydrogen, direct conversion of CH_4 to H_2 using three reactors, i.e. air reactor + fuel reactor + water splitting reactor (ENI).
- Chemical-looping reforming of solid fuels to produce hydrogen (Alstom, Ohio State University)
- Rotating reactors with coated monoliths (IFP)
- Membrane assisted reactors fixed beds (TNO).

Reactor system (circulating fluidized beds):

- well established
- commercially available
- simple
- moderate costs
- up-scaling needed
- development needed for special applications like solid fuels and reforming

Oxygen-carrier particles:

- durability and reactivity confirmed
- scale-up of particle manufacture established
- commercially available raw materials established
- long-term testing performed
- needed: portfolio of materials to:
 - cover different looping technologies
 - reduce commercial risks, 1) access of different suppliers, 2) backup for unexpected difficulties
 - produce confidence in new technology
 - cover uncertainties regarding what is optimal between with respect to reactivity, cost, health

Conclusions

- Proof of concept. High conversion, successful operation, particles not damaged by operation.
- A number of possible applications available, involving direct "combustion" and hydrogen production for gaseous, liquid and solid fuels.
- Unique features for CO₂ capture.
- A number of oxide materials available from expensive high reactivity Ni-oxides, to cheap natural ores like ilmenite.