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TODAY:

The need for BIoCCS/BECCS
Why CLC ?

Status of CLC development
Why Nordic Countries ?

Are the costs reasonable ?



Carbon budget for max 1.5°C and 2°C
300 and 900 Gton CO,

Emissions today >35 Gton/yr :

<10-30 years left of todays emissions!!

Climate goal well below” 2°C - 20 years ?



To meet the 2°C target it is not sufficient to stop emissions of
CO,, most likely we need negative emissions by the end of the

century.
.0 A NASA (2012) Glabal Enengy Asseasmeant
------ Emissions falling before 2020
50-90% reduction by 2050
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To meet the 1.5°C target, budget is very soon filled.

F IASA (2012) Glabal Energy Asssasmeant
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BECCS (Bioenergy Carbon Capture & Storage)

ATMOSPHERE

CO, CO,

fossil fuels biomass with
carbon capture

GROUND



Carbon Capture and Storage (CCS) status
Three main technologies?, all having
1 large energy penalties, around 10%-units
1 significant need for gas-separation equipment
 cost normally estimated to 50 €/tonne CO, or more

= First commercial large post-oxidation in operation
2 years (Boundary Dam, Canada)

1post-, pre- and oxycombustion
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Unit 3, with CO,, capture
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Why chemical-looping combustion (CLC) ? condensation
Oxygen is transferred from air to Na: Oz COz2 H0
fuel by metal oxide particles TT TT
MeO (+ Me)
>
Inherent CO, capture: Al el
— fuel and combustion air never | reactor reactor
mixed Me (+ MeO)
— no active gas separation B
needed T_T T_T
— large costs/energy penalties of  Air Fuel

gas separation avoided

* Potential for real breakthrough in costs of CO, capture

 But, does it work in practice ?
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Chalmers 300 W gas-CLC, 2004
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Dimensions:
Air Reactor: 25x35 mm, 25x25 mm
Fuel Reactor: 25x25 mm
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Chalmers’ 100 kW CLC for solid fuel, 2011

AR=AIr reactor, FR=fuel reactor, LS=loop seal, C=cyclone,
CS=Carbon stripper, CR=Circulation riser

CY1




Where are we ?

= CLC operation worldwide
= 34 small pilots : 0.3 kW -3 MW

=  >9000 h with >70 oxygen carriers, >150 publications
= 3600 h at Chalmers with >50 oxygen carriers

= CLC with solid fuels

= Low cost oxygen carriers can be used

= |ncomplete gas conversion/char conversion
= Some oxy-polishing needed, oxygen demand: 5-25%
= Upto 98% CO, capture attained (little char leakage to air reactor)
=  Up to 90% fuel conversion (i.e. 10% char elutriated)

= 3000 h operation in 17 units
= 400 h at Chalmers 10 kW and 100 kW




1000 MWin
CFBboiler

dimensions
11x25.5x48

1000 MWhn
CLCboller

dimensions

Added cost: 11x25x48
insulation of
fuel reactor
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Fuel reactor,
cyclones, ducts and
post-oxidation
chamber: 2500 m?

Cost: 1500 €/m?

Added cost of fuel
reactor:

4 M€

0.4 M€/year
2 Mton CO,/year

= 0.2 €/ton CO,

From: Lyngfelt, A., and Leckner, B., A 1000 MWth Boiler for Chemical-Looping Combustion of Solid Fuels - Discussion of Design and Costs, Applied Energy in press (available on-line)



http://www.sciencedirect.com/science/article/pii/S030626191500519X

cost €/tonne CO CcO penalty, %
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Scale-up, first step without CO, capture, to assess technology

« Main costs: Downstream treatment and oxygen production not needed

« CO, capture could be added afterwards

Scale up, reduce/eliminate cost of boiler and surrounding system:

» Add fuel reactor to existing CFB boiler / Build dual purpose boiler (CFB/CLC)

€/tonne CO CcO penalty, %
G compression ™ 10 3
65 49 65
1 0.1-23 -
2 1.3-4 -
0.8 0.8 0.8
0.2 0.2 0.1
-0.5 -0.5 -0.5
35 1.9-6.8 0.4

Lyngfelt, A., and Leckner, B., A 1000 MW, Boiler for Chemical-Looping Combustion of Solid Fuels - Discussion of Design and Costs, Applied Energy 157 (2015) 475-487



Estimated cost of CLC, less than half of competing
technologies

Should be suitable for biomass.
slarger biomass boilers normally use CFB technology

Additional potential advantages

*No pollutants in flow from air reactor

* Lower air ratio possible ?

Pollutants, e.g. NO,, concentrated in CO, flow

* Possibility to eliminate NOx emissions ?
*No alkali from air reactor ?

« Alkali leaves with flue gases from fuel reactor ?
and/or is captured by the oxygen carrier ?
No corrosion ?
Higher steam data / efficiency ?
More research needed
*No other ash from air reactor ?

e Reduced fouling ?

* Problems concentrated in smaller flow from fuel reactor ?



(M tonnes/year)

CO, capture and storage in Nordic countries

total Nordic fossil CO,
emissions 200 Mt/year

INn addition:

>50 Mt/year biogenic

CO, emissions, sources >100 000 tons/year:
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potential storage locations CO, biofuel point sources
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Ideas of port in western Norway with pipeline to storage,
could receive CO, by boat from Sweden/Finland.



Nordic countries and BioCCS

Large biogenic emissions (25% of fossil)
Very large and proven storage locations
Key competence in storage, Norway worldleading

Potential synergies with industrial emission that
would need storage (cement, iron & steel...)

Key competence in CLC

Moral: Nordic countries have by far exceeded their
”’share of the atmosphere”

We are rich, if we cannot afford it who can ?



What Is a reasonable cost ?

global carbon intensity = 2 kg CO,/€
=>
avoldance cost” much less than 2 €/kg CO,

Thus, avoidance cost < 0.1 €/kg CO,
leads to cost <5% of GDP

Avoidance costs <0.1 €/kg preferred !!!
(<100 €/ton)
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Cost/incentive, €/k

0.7
0.65
0.6
0.55
0.5
0.45
0.4
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0.25
0.2
0.15
0.1
0.05

T 2 €/kg CO2 (= global BNP/global emissions)

CO,-tax for fossilfree vehicle fleet ?7? [2]

(corresponds to 200% increase of petrol price)

Swedish climate programme [1]

CO2-tax Sweden
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Scale-up
Fuel size:

e Use intermediate size, 90-300 um
 High CO, capture and low loss of char

Reactor and system design:
e Use existing proven CFB technology when possible

Scale-up strategy, lower cost by
e First step without CO, capture
e Dual purpose unit, i.e. CLC that can be used as CFB.

Circulation system/control
o Key for successful operation



Pilot operation:

e >9000 h of operation and ~3000 h with solid fuels
shows CLC is feasible.

e Additional small-scale pilot operation will not answer key
questions related to performance in full-scale

 Small pilots do not have relevant height to show conversion
possible in full-scale riser, wrt. conversion of gas and char

 High bottom beds possible, but will be slugging because of high
ratio H/D

o Technology ready for scale-up !



Nordic Energy Research ,ﬁff Noradcn
Flagship Project Nordic Energy Research

Negative CO,

Enabling negative CO, emissions in the Nordic energy system through the
use of Chemical-Looping Combustion of biomass (bio-CLC)

') | Negative CO:2

Budget
(KNOK)
ey Chalmers University of
s Technology 9258
BEIONA The Bellona Foundation 2080
Sibelco Nordic AB 240
SosimeLey SINTEF Energy Research 6555
SINTEF Materials and
=INTEF Chemistry 2781
VTT Technical Research 6667
viITr Centre of Finland Ltd
o Abo Akademi University 3337

Abo Akademi S um: 30924



Conclusions

*BioCCS will be needed in large scale to meet climate
targets

*CCS has reasonable costs
*Nordic countries are very suitable for developing BioCCS

*Chemical-Looping Combustion has unigue potential for
dramatically reduced cost of CO, capture



QUESTIONS ?

>290 publications on chemical-looping on:
http://www.entek.chalmers.se/lyngfelt/co2/co2publ.htm
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