Energy-efficient CO₂ Capture with Chemical-Looping Combustion

Anders Lyngfelt

CCSP - Final results seminar, October 13, 2016 Helsinki

TODAY:

- The need for BioCCS/BECCS
- Why CLC?
- Status of CLC development
- Why Nordic Countries?
- Are the costs reasonable?

Carbon budget for max 1.5°C and 2°C: 300 and 900 Gton CO₂

Emissions today >35 Gton/yr:

<10-30 years left of todays emissions!!

Climate goal "well below" 2°C - 20 years?

To meet the 2° C target it is not sufficient to stop emissions of CO_2 , most likely we need <u>negative</u> emissions by the end of the

To meet the 1.5°C target, budget is very soon filled.

BECCS (Bioenergy Carbon Capture & Storage)

ATMOSPHERE

GROUND

Carbon Capture and Storage (CCS) status Three main technologies¹, all having □ large energy penalties, around 10%-units □ significant need for gas-separation equipment □ cost normally estimated to 50 €tonne CO₂ or more

First commercial large post-oxidation in operation
 2 years (Boundary Dam, Canada)

¹post-, pre- and oxycombustion

Why chemical-looping combustion (CLC)?

Oxygen is transferred from air to fuel by metal oxide particles

Inherent CO₂ capture:

- fuel and combustion air never mixed
- no active gas separation needed
- large costs/energy penalties of gas separation avoided

removed by

condensation

- Potential for real breakthrough in costs of CO₂ capture
- But, does it work in practice?

Chalmers' 10 kW gas-CLC, 2003

air
1 air reactor, 2 cyclone

3 fuel reactor, 4 loop seals

without insulation

Chalmers 300 W gas-CLC, 2004

Dimensions:

Air Reactor: 25x35 mm, 25x25 mm

Fuel Reactor: 25x25 mm

Chalmers' 10 kW chemical-looping combustor for solid fuels. First operation 2006 Published 2008

Lyngfelt, A., Chemical-looping combustion of solid fuels, *Greenhouse Gas Issues*, No. 87, September 2007, 9-10.

Where are we?

CLC operation worldwide

- 34 small pilots: 0.3 kW 3 MW
- >9000 h with >70 oxygen carriers, >150 publications
 - 3600 h at Chalmers with >50 oxygen carriers

CLC with <u>solid</u> fuels

- Low cost oxygen carriers can be used
- Incomplete gas conversion/char conversion
 - Some oxy-polishing needed, oxygen demand: 5-25%
 - Up to 98% CO₂ capture attained (little char leakage to air reactor)
 - Up to 90% fuel conversion (i.e. 10% char elutriated)
- 3000 h operation in 17 units
 - 400 h at Chalmers 10 kW and 100 kW

reactor

Aaaea
cost
relative
to CFB ¹

A a a a

Type of cost	estimation, €/tonne CO ₂	range, €/tonne CO ₂	Efficiency penalty, %
CO ₂ compression	10	10	3
Oxy-polishing	6.5	4-9	0.5
Boiler cost	1	0.1-2.3	-
Oxygen carrier	2	1.3-4	-
Steam and hot CO ₂ fluidization	0.8	0.8	0.8
Fuel grinding	0.2	0.2	0.1
Lower air ratio	-0.5	-0.5	-0.5
<u>Total</u>	<u>20</u>	<u>15.9-25.8</u>	3.9

Scale-up, first step without CO₂ capture, to assess technology

- Main costs: Downstream treatment and oxygen production not needed
- CO₂ capture could be added afterwards

Scale up, reduce/eliminate cost of boiler and surrounding system:

• Add fuel reactor to existing CFB boiler / Build dual purpose boiler (CFB/CLC)

Type of cost	estimation, €/tonne CO ₂	range, €/tonne CO ₂	Efficiency penalty, %
CO₂ compression	10	10	3
Oxy-polishing	6.5	4-9	0.5
Boiler cost	1	0.1-2.3	-
Oxygen carrier	2	1.3-4	-
Steam and hot CO ₂ fluidization	0.8	0.8	0.8
Fuel grinding	0.2	0.2	0.1
Lower air ratio	-0.5	-0.5	-0.5
<u>Total</u>	<u>3.5</u>	<u>1.9-6.8</u>	0.4

¹Lyngfelt, A., and Leckner, B., A 1000 MW_{th} Boiler for Chemical-Looping Combustion of Solid Fuels - Discussion of Design and Costs, Applied Energy 157 (2015) 475-487

Estimated cost of CLC, less than half of competing technologies

Should be suitable for biomass.

•larger biomass boilers normally use CFB technology

Additional potential advantages

- •No pollutants in flow from air reactor
 - Lower air ratio possible ?
- •Pollutants, e.g. NO_x, concentrated in CO₂ flow
 - Possibility to eliminate NOx emissions?
- •No alkali from air reactor?
 - Alkali leaves with flue gases from fuel reactor ?
 - and/or is captured by the oxygen carrier?
 - No corrosion?
 - Higher steam data / efficiency ?
 - More research needed
- •No other ash from air reactor?
 - Reduced fouling ?
 - Problems concentrated in smaller flow from fuel reactor?

CO₂ capture and storage in Nordic countries

total Nordic fossil CO₂ emissions 200 Mt/year in addition:

>50 Mt/year biogenic

potential storage locations

CO₂ biofuel point sources

Ideas of port in western Norway with pipeline to storage, could receive CO₂ by boat from Sweden/Finland.

Nordic countries and BioCCS

- Large biogenic emissions (25% of fossil)
- Very large and proven storage locations
- Key competence in storage, Norway worldleading
- Potential synergies with industrial emission that would need storage (cement, iron & steel...)
- Key competence in CLC

- Moral: Nordic countries have by far exceeded their "share of the atmosphere"
- We are rich, if we cannot afford it who can?

What is a reasonable cost?

global carbon intensity ≈ ½ kg CO₂/€

=>
"avoidance cost" much less than 2 €kg CO₂

Thus, avoidance cost < 0.1 €kg CO₂ leads to cost <5% of GDP

Avoidance costs <0.1 €kg preferred !!! (<100 €ton)

Scale-up

Fuel size:

- Use intermediate size, 90-300 μ m
 - High CO₂ capture and low loss of char

Reactor and system design:

Use existing proven CFB technology when possible

Scale-up strategy, lower cost by

- First step without CO₂ capture
- Dual purpose unit, i.e. CLC that can be used as CFB.

Circulation system/control

Key for successful operation

Pilot operation:

- >9000 h of operation and ~3000 h with solid fuels shows CLC is feasible.
- Additional small-scale pilot operation will <u>not</u> answer key questions related to performance in full-scale
 - Small pilots do not have relevant height to show conversion possible in full-scale riser, wrt. conversion of gas and char
 - High bottom beds possible, but will be slugging because of high ratio H/D
- Technology ready for scale-up!

Nordic Energy Research Flagship Project

Dudast

Negative CO₂

Enabling negative CO₂ emissions in the Nordic energy system through the use of Chemical-Looping Combustion of biomass (bio-CLC)

		(kNOK)
CHALMERS	Chalmers University of Technology	9258
BELLONA	The Bellona Foundation	2080
	Sibelco Nordic AB	240
SIBELCO	SINTEF Energy Research	6555
(1) SINTEF	SINTEF Materials and Chemistry	2787
√√/	VTT Technical Research Centre of Finland Ltd	6667
Å	Åbo Akademi University	3337
Åbo Akademi	Sum:	30924

Conclusions

- •BioCCS will be needed in large scale to meet climate targets
- •CCS has reasonable costs
- Nordic countries are very suitable for developing BioCCS
- •Chemical-Looping Combustion has unique potential for dramatically reduced cost of CO₂ capture

QUESTIONS?

>290 publications on chemical-looping on: http://www.entek.chalmers.se/lyngfelt/co2/co2publ.htm