Chemical-Looping Combustion

CLC consortium and Bio-CCS in Sweden

Anders Lyngfelt

Workshop on Sustainability and GHG impact of Bio-CC(U)S Lausanne, November 16, 2016

Why chemical-looping combustion (CLC)?

removed by condensation

Oxygen is transferred from air to fuel by metal oxide particles

Inherent CO₂ capture:

- fuel and combustion air never mixed
- no active gas separation needed
- large costs/energy penalties of gas separation avoided

Potential for real breakthrough in costs of CO₂ capture

But does it work?

- CLC operation worldwide
 - 34 pilots: 0.3 kW 3 MW
 - >9000 h operation: of which solid fuels >3000 h

CLC with <u>solid</u> fuels

- Low cost oxygen carriers can be used
- Incomplete conversion/capture
 - Some oxy-polishing needed, estimate: 10-20%
 - Up to 98% CO₂ capture attained
- Sufficient experience in smaller pilots
 - Ready for scale-up !!

Fuel reactor, cyclones, ducts and post-oxidation chamber: 2500 m²

Cost: 1500 €m²

Added cost of fuel reactor:

4 M€

⇒ 0.4 M€year

2 Mton CO₂/year

=**0.2 €**ton CO₂

1000 MWth CLC boiler dimensions 11x25x48

Added cost: insulation of fuel reactor

Other costs

- CO₂ compression
 - Similar to other capture technologies
- Oxygen production (incomplete conversion)
 - 5-10 times less oxygen as compared to oxyfuel
- CO₂ purification
 - As in oxyfuel, option for SO₂/NO_x capture
- Oxygen carrier
 - With low cost ores, estimated to 1-4 €/tonne CO₂
- Minor costs, >1 €/tonne
 - Fuel grinding, steam for fluidization
- Total costs, estimated to 16-26 €/tonne CO₂

Estimated cost of CLC, less than half of competing technologies

Should be suitable for biomass.

•larger biomass boilers normally use CFB technology

Additional potential advantages

- •No pollutants in flow from air reactor
 - Lower air ratio possible ?
- •Pollutants, e.g. NO_x, concentrated in CO₂ flow
 - Possibility to eliminate NOx emissions?
- •No ash/alkali from air reactor?
 - Alkali leaves with flue gases from fuel reactor ?
 - and/or is captured by the oxygen carrier?
 - No fouling/high temperature corrosion?
 - Higher steam data / efficiency possible ?
 - Lower operational and maintenance costs?
 - Problems concentrated in smaller flow from fuel reactor ?

Strategy for full-scale demonstration of chemical-looping at low cost?

Build dual purpose CFB/CLC, or retrofit CFB to CLC

Low added cost of CLC plant

Skip CO₂ capture (in 1st stage)

 Major added costs can be avoided, i.e. CO₂ compression and purification, and oxygen production

Go for biomass

 Potential advantages for avoiding fouling/high-temperature corrosion, thus potential of higher steam data/higher efficiency. Pollutants (NO_x) in smaller CO₂ stream, emissions can be reduced

When the technology successfully demonstrated, add CO₂ capture (2nd stage)

CO₂ sources in Nordic countries

Finland + Sweden fossil CO₂ emissions: <120 Mt/year

in addition:

>50 Mt/year biogenic CO₂ from point sources

>100 000 tons/year

Nordic countries and BioCCS

- Large biogenic emissions (Sweden + Finland)
- Very large and proven storage locations (Norway)
- Key competence in storage, Norway worldleading
- Potential synergies with industrial emission that would need storage (cement, iron & steel...)
- Key competence in CLC

Nordic Energy Research Flagship Project

Dudast

Negative CO₂

Enabling negative CO₂ emissions in the Nordic energy system through the use of Chemical-Looping Combustion of biomass (bio-CLC)

		(kNOK)
CHALMERS	Chalmers University of Technology	9258
BELLONA	The Bellona Foundation	2080
	Sibelco Nordic AB	240
SIBELCO	SINTEF Energy Research	6555
(1) SINTEF	SINTEF Materials and Chemistry	2787
√√// / / / / / / / /	VTT Technical Research Centre of Finland Ltd	6667
Å	Åbo Akademi University	3337
Åbo Akademi	Sum:	30924

Conclusions

- •BioCCS will be needed in large scale to meet climate targets
- Nordic countries are very suitable for developing BioCCS
- •Chemical-Looping Combustion has unique potential for dramatically reduced cost of CO₂ capture
- •CLC may have significant advantages for biomass combustion
- •Full-scale demo of chemical-looping combustion could be done at low cost (i.e. compared to other capture technologies)

THANK YOU! QUESTIONS?

>300 publications on chemical-looping on: http://www.entek.chalmers.se/lyngfelt/co2/co2publ.htm