

High volatiles conversion in a dual stage fuel reactor system for Chemical Looping Combustion of wood biomass

<u>Johannes Haus</u>, Yi Feng*, Ernst-Ulrich Hartge, Joachim Werther, Stefan Heinrich

Institute of Solids Process Engineering and Particle Technology

Hamburg University of Technology

*Zhejiang University, Hangzhou, China

Chemical Looping Combustion

- Carbon capture process
- Solid oxygen carrier (OC) is oxidized/reduced (reactor-regenerator system)
- iG-CLC: solid fuel is gasified
- Complex heterogeneous reaction network
 - Oxygen carrier reactions
 - Solid fuel conversion
- Conversion kinetics differ from those of regular air firing

Introduction

Fuel conversion pathway

Solid fuel conversion pathway

In-situ Gasification Chemical Looping Combustion

- Solid fuel releases volatiles
- Remaining char is gasified
- CO, H₂ and CH₄ can react with oxidized carrier

Main issue

- Parts of fuel gases do not contact or react with oxygen carrier (bypass)
- CO, H₂ and CH₄ leave system unconverted
 → plant efficiency ↓

Expressed by the term oxygen demand Ω_{OD} :

 $\Omega_{\rm OD} = \frac{\text{oxygen needed for fuel gases leaving FR}}{\text{oxygen needed for total fuel conversion}}$

Perfomance of the CLC process

Carbon slip with the oxygen carrier to AR

- CO₂ released in AR not captured
- Carbon capture η_{CC}:

$$\eta_{CC} = \frac{\text{carbonaceous gases (FR)}}{\text{carbonaceous gases (FR + AR)}}$$

Elutriated carbon fines

- Solid fuel not converted → plant efficiency ↓
- Solid fuel conversion X_{sf}:

$$X_{sf} = 1 - \frac{Carbon elutriated}{Carbon introduced}$$

Strong fuel influence on perfomance

- Biomass has high volatile fraction
- Very reactive char
- Mainly oxygen demand Ω_{OD} is an issue

Introduction

Project aim: enhance gas conversion

Investigation of general process behavior

- Fluid dynamics
- Chemical conversion

Experiments with various fuels

- Complex conversion behavior of lignite, bituminous coal and methane
- Interaction of fluid mechanics and chemical conversion (particle size)

Special focus on two-stage system

- Second stage for fuel gas conversion
- Reducing oxygen demand
- ✓ Suitable design for high volatile fuels
 Maybe suitabe design for Biomass-CLC?

Chemical Looping Combustion plant at SPE Hamburg

[1] Haus et al., Analysis of a Two-Stage Fuel Reactor System for the Chemical-Looping Combustion of Lignite and Bituminous Coal, Energy Technology (2016)

Experimental Pilot Plant Experimental setup

Dimensions	height / m	diameter / m
air reactor	8	0.1
fuel reactor	4	0.25
bed height FR	0.6	per stage
cyclone	0.34	0.21
	width / m	length /m
siphon S1	0.16	0.13
siphon S2	0.13	0.25

Operation mode

- Air reactor -> fast fluidized bed (5 m/s)
- Fuel reactor -> bubbling bed (0.25 m/s)
- Siphons -> bubbling bed (0.2 m/s)

Fuel injection

- Solid fuels: upper or lower stage
- Gaseous fuels: mixed with fluidization gas

25 kW_{th} rated power

Experimental 25 kW_{th} CLC pilot plant at TUHH

Experimental Pilot PlantMeasurement system

Gas measurements

- CH₄, CO, O₂, CO₂ and H₂ detected in FR exhaust
- Possibility to measure after first stage of FR
- CO₂ and O₂ measured at AR exhaust
- CO₂ concentrations include contributions from fluidization and injection gas

Experimental Pilot PlantMaterials in pilot plant

Oxygen Carrier

Molecular	CuO/Al ₂ O ₃		
composition			
Density [kg/m ³]	4094		
Bulk density [kg/m ³]	1027		
Oxygen carrying	4.50		
capacity R ₀ [wt. %]	1.50		

1 = Oxidized carrier

2 = Reduced carrier

Experimental Pilot PlantMaterials in the pilot plant

German hard wood biomass (shredded pellets)

Rhenish lignite dust

	Biomass	Lignite
Bulk density [kg/m3]	354	1000
LHV [MJ/kg]	18.7	28
Proximate Analysis		
Ash [wt.% raw]	0.2	4
Moisture [wt.% raw]	8.6	11
Volatiles [wt.% raw]	85.5	45
Fixed carbon [wt.% raw]	5.7	40
Ultimate Analysis		
Nitrogen [wt.% raw]	2.9	0.7
Carbon [wt.% raw]	47.1	59.5
Hydrogen [wt.% raw]	10.3	4.3
Sulphur [wt.% raw]	< 0,1	0.35
Oxygen [wt.% raw]	31.9	20.3
75 [_	

Experimental resultsGerman wood biomass

Fuel reactor exhaust gas concentrations (dry)

Air reactor exhaust gas concentrations (dry)

- significant amount of unconverted gases after 1st stage
- low amounts of H₂ after
 2nd stage

Overall very good gas conversion, but only after both stages!

Experimental resultsFine lignite

Fuel reactor exhaust gas concentrations (dry)

Air reactor exhaust gas concentrations (dry)

- high concentration of unconverted gases after 1st stage
- detectable amounts of H₂
 and CO after 2nd stage
- fine particles seem to convert in the upper part of the first stage

Overall very good gas conversion, but only after both stages!

	Fuel input	Temperature	η_{cc}	Ω_{OD}	Ω'_{OD} 1 stage	X _C
Biomass	15 kW _{th}	850° C	0.93	0.016	0.075	0.99
Lignite	19 kW _{th}	850° C	0.97	0.006	>0.25	0.98

- Constantly low oxygen demand (< 3%) for investigated fuels
- Lignite profits strongly from two-stage design (Ω_{OD} 25% \rightarrow 1%)
- Biomass profits as well from two-stage design $(\Omega_{OD} 7.5\% \rightarrow 2\%)$
- Excellent fuel conversion
- Fine particles reduce carbon slip

Second stage suitable to reduce oxygen demand during operation with high volatile fuels

Conclusions and outlook

- Near 100% solid fuel conversion for both fuels
- After first stage: high shares of unconverted gases were traced
- Combustible gases are almost completely converted after the second stage.
- Reactive char and fine fuel particles reduce carbon slip
- High values of the carbon capture efficiency η_{CC} :

93% for biomass and 99% for lignite

Lignite and biomass benefit strongly from the two stage design

Two-stage fuel reactor system suitable to tackle one of the main problems of biomass-CLC: the oxygen demand

Current work:

- Reduce pressure drop of the fuel reactor
- Use cheaper oxygen carrier materials

The funding of this research project by the Germany Research foundation within the priority program SPP1679: "Dynamic simulation of interconnected particle processes" is gratefully acknowledged.

This research was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme.

